STUDY MATERIAL

On

SoftwareEngineering

(For 5" Semester CSE)

Prepared by :
SWETA SAHA

Asst Prof(CSE),CVRP

Course Contents

1. Introduction to Software Engineering
Program vs. Software product

Emergence of Software Engineering.

Computer Systems Engineering

Software Life Cycle Models
Classical Water fall model

Iterative Water fall model Prototyping
model
Evolutionary model Spiral model

2. Software Project Management

Responsibility of Project Manager
Project Planning

Metrics for Project size estimation(LOC and FP)

Project Estimation Techniques

COCOMO Models, Basic, Intermediate and complete
Scheduling

Organization and Team structure

Staffing

Risk Management

Configuration Management

3. Requirement Analysis and specification

Requirements gathering and analysis
Software Requirements Specification
Contents of SRS

Characteristics of Good SRS
Organization of SRS

Techniques for representing complexing logic

4. Software Design

What is a Good S/W design
Cohesion and coupling

Neat arrangement

S/W Design approaches

Structured analysis

Data Flow Diagrams

Symbols used in DFD

Designing DFD

Developing DFD model of a system

5-27

28-60

61-71

72-91

Shortcomings of DFD
Structured design
Principles of transformation of DFD to Structure Chart

Transform analysis and Transaction Analysis
Design Review

5. User Interface Design 92-103

Characteristics of Good Interface
Basic concepts of UID

Types of User interfaces
Components based GUI
development

6. Software Coding & Testing 104-123

Coding
Code Review

Code walk through _
Code inspections and software Documentation

Testing

Unit testing

Black Box Testing _
Ecw_lvalence class partitioning and boundary value analysis
White Box Testing

Different White Box methodologies
statement coverage branch coverage
condition coverage

path coverage

cyclomatic complexity

data flow based testing

mutation testing

Debugging approaches

Debugging guidelines

Integration Testing

Phased and incremental integration testing
System testing alphas beta and acceptance testing

Performance Testing, Error seeding
General issues associated with testing

7. Software Reliability

Software Reliability
Different reliability metrics
Reliability growth modeling

Software quality
Software Quality Management System

124-134

Model Question for Software Engineering 135-137
BOOKS Recommended:-
Name _of the
SI.No Name of Authors Title of the Book publisher
01 Rajib Mall Fundamentals of PHI
Software Engineering
02 Deepak Jain Software Engineering: Oxford university
Principles and Practice press
03 Jawadekar Software Engineering: A TMH

Primer

Chapter —1

Introduction to Software Engineering

Contents

Program vs. Software product
Emergence of Software Engineering.
Computer Systems Engineering

Software Life Cycle Models
Classical Water fall model

Iterative Water fall model Prototyping model
Evolutionary model Spiral model

Relevance of Software Engineering

Software engineering is the field of computer science that deals with the
building of software systems which are so large or so complex that they are

build by a team or teams of engineers.

Parnas has defined software engineering as “multi-person construction of multi-

version software”.

According to Fritz Bauer, software engineering is “The establishment and use of
sound engineering principles in order to obtain economically software that is

reliable and works efficiently on real machines”.

Stephen Schach defined as ““ A discipline whose aim is the production of quality
software, software that is delivered on time, within budget, and that satisfies its
requirements”.

Software has become critical to advancement in almost all areas of human

endeavour. The art of programming only is no longer sufficient to construct

large programs. There are serious problems in the cost, timeliness, maintenance

and quality of many software products.

The foundation for software engineering lies in the good working knowledge of
computer science theory and practice. The theoretical background involves
knowing how and when to use data structures, algorithms and understanding
what problems can be solved and what cannot. The practical knowledge
includes through understanding of the workings of the hardware as well as

thorough knowledge of the available programming languages and tools.

Software engineering has the objective of solving these problems by producing
good quality, maintainable software, on time, within budget. To achieve this
objective, we have to focus in a disciplined manner on both the quality of the

product and on the process used to develop the product.

Software Characteristics and Applications

Software is a logical rather than a physical system element. Its characteristics
that make it different from other things human being build.

e Software is developed or engineered, it is not manufactured in the
classical sense which has quality problem.

e Software does not “wear out”, but it deteriorates due to change.

e Although the industry is moving toward component-based construction,
most software continues to be custom-built. Modern reusable components
encapsulate data and processing into software parts to be reused by
different programs. E.g. graphical user interface, window, pull-down
menus in library etc.

Software Applications

Software may be applied in any situation for which a pre-specified set of

procedural steps has been defined. Information content and determinacy are

import factors in determining the nature of a software application. Contents
refer to the meaning and form of incoming and outgoing information.
Applications are:
= System software: System software is a collection of programs written to
service other programs. Examples of system software are compilers,
editors, file management utilities, operating system components, drivers.
= Application software: Stand-alone programs for specific needs.
= Engineering / scientific software: Characterized by “number crunching”
algorithms. Such as automotive stress analysis, molecular biology, orbital
dynamics etc.
» Embedded software resides within a product or system.
» Product-line software focus on a limited marketplace to address mass
consumer market.
= \Web based software, the web pages retrieved by a browser are software
that incorporates executable instructions and data. As web 2.0 emerges,
more sophisticated computing environments is supported integrated with
remote database and business applications.
= Al software uses non-numerical algorithm to solve complex problem.

Examples are Robotics, expert system, pattern recognition, game playing.

Emergence of Software Engineering

Software engineering techniques have evolved over many years which resulted
series of innovations and accumulation of experience about writing good quality
programs. Innovations and programming experiences which have contributed to

the development of software engineering are briefly describe in Article 1.4.

Early Computer Programming, High Level Language
Programming, Control Flow Based Design, Data Flow Oriented
Design, Data Structure Oriented Design, Object and Component
Bases Design

Early Computer Programming

Early commercial computers were very slow as compared to today's standard
computers. Even simple processing tasks took more computation time on those
computers. No wonder that programs at that time very small in size and lacked
sophistication. Those programs were usually written in assembly languages.
Program lengths were typically limited to about a few hundreds of lines of
monolithic assembly code. Every programmer writing the programs in his own

style.

High-Level Language Programming

Computers become faster with the introduction of the semiconductor
technology. With the availability of more powerful computers, it became
possible to solve larger and more complex problem. High Level languages such
as FORTRAN, ALGOL and COBOL were introduced. This considerably
reduced the effort required to develop software products and helped
programmers to write larger programs. However, the software development

style was limited to sizes of around a few thousands of lines of source code.

Control Flow-Based Design

Programmers found it increasingly difficult not only to write cost effective and
correct programs, but also to understand and maintain programs written by
others. Thus particular attention is paid to the design of a program’s control

flow structure.

A program's control flow structure indicates the sequence in which the

programs instructions are executed.

Data Structure-Oriented Design

Software engineers were now expected to develop larger more complicated
software products which often required writing in excess of several tens of
thousands of lines of source code. The control flow-based programs
development techniques could not be satisfactorily used to handle these
problems and therefore more effective program development techniques were
needed. Using data structure-oriented design techniques, first a program's data
structures are designed. In the next step, the program design is derived from the

data structure.

Object-Oriented Design

An object-Oriented design technique is an intuitively appealing approach, where
the natural objects occurring in a problem are first identified and then the
relationships the objects such as composition, reference, and inheritance are
determined. Each object essentially acts as a data hiding or data abstraction
entry. Object-oriented techniques have gained wide acceptance because of their
simplicity, code and design reuse scope they offer and promise of lower
development time, lower development cost more robust code and easier

maintenance.

Software Life Cycle Models

The goal of software engineering is to provide models and processes that lead to
the production of well-documented maintainable software.

A life cycle model prescribes the different activities that need to be carried

out to develop a software product and the sequencing of these activities.
A software life cycle is the series of identifiable stages that a software product
undergoes during its lifetime. It also captures the order in which these activities
are to be undertaken.
A software life cycle model is a descriptive and diagrammatic representation of
the software life cycle.
The various phases of software life cycle or Software Development Life Cycle
(SDLC) are:

% Preliminary Investigation

% Software Analysis

s Software Design

s Software Testing

% Software Maintenance

A software life cycle model is referred to as software process model.

Classical Waterfall Model and Iterative Waterfall Model

This model is called as linear sequential model. This model suggests a

systematic approach to software development.

The project development is divided into sequence of well-defined phases. It can
be applied for long-term project and well understood product requirement.
The classical waterfall model breaks down the life cycle into an intuitive set of
phases. Different phases of this model are:

o Feasibility study

e Requirements analysis and specification

e Design

e Coding and unit testing

e Integration and system testing

e Maintenance

Feasibility
Study

y
Requirement

Analysis and
Specification

Design

Coding and
Unit Testing ‘

Integration

and System
Testing

Fig. 1.1 Classical Waterfall Model

Maintenance

The phases starting from the feasibility study to the integration and system

testing phases are known as the development phases. All these activities are

performed in a set of sequence without skip or repeat. None of the activities can

be revised once closed and the results are passed to the next step for use.

Feasibility Study

The main of the feasibility study is to determine whether it would be financially,

technically and operationally feasible to develop the product. The feasibility

study activity involves the analysis of the problem and collection of all relevant

information relating to the product such as the different data items which would

be input to the system, the processing required to be

carried out on these data, the output data required to be produced by the system.

Technical Feasibility

Can the work for the project be done with current equipment, existing software

technology and available personnel?

Economic Feasibility

Are there sufficient benefits in creating the system to make the costs

acceptable?

Operational Feasibility

Will the system be used if it is developed and implemented?

These phases capture the important requirements of the customer, also
formulate all the different ways in which the problem can be solved are
identified.

Requirement Analysis and Specifications

The goal of this phase is to understand the exact requirements of the customer
regarding the product to be developed and to document them properly.
This phase consists of two distinct activities:

e Requirements gathering and analysis.

e Requirements specification.

Requirements Gathering and Analysis

This activity consists of first gathering the requirements and then analyzing

the gathered requirements.

The goal of the requirements gathering activity is to collect all relevant
information regarding the product to be developed from the customer with a
view to clearly understand the customer requirements.

Once the requirements have been gathered, the analysis activity is taken up.

Requirements Specification

The customer requirements identified during the requirement gathering and
analysis activity are organized into a software requirement specification (SRS)
document. The requirements describe the “what” of a system, not the “how”.
This document written in a natural language contains a description of what the
system will do without describing how it will be done. The most important
contents of this document are the functional requirements, the non- functional
requirements and the goal of implementation. Each function can be
characterized by the input data, the processing required on the input data and the
output data to be produced. The non-functional requirements identify the
performance requirements, the required standards to be followed etc. The SRS

document may act as a contract between the development team and customer.

Design

The goal of this phase is to transform the requirements specified in the SRS
document into a structure that is suitable for implementation in some
programming language. Two distinctly different design approaches are being
used at present. These are:

e Traditional design approach

e Object-oriented design approach

Traditional Design Approach

The traditional design technique is based on the data flow oriented design
approach.

The design phase consists of two activities: first a structured analysis of the
requirements specification is carried out, second structured design activity.
Structured analysis involves preparing a detailed analysis of the different
functions to be supported by the system and identification of the data flow
among the functions. Structured design consists of two main activities:
architectural design (also called high level design) and detailed design (also
called low level design).

High level design involves decomposing the system into modules, representing
the interfaces and the invocation relationships among the modules. Detailed

design deals with data structures and algorithm of the modules.

Object-Oriented Design Approach

In this technique various objects that occur in the problem domain and the
solution domain are identified and the different relationships that exist among

these objects are identified.

Coding and Unit Testing

The purpose of the coding and unit testing phase of software development is to
translate the software design into source code. During testing the major
activities are centred on the examination and modification of the code. Initially
small units are tested in isolation from rest of the software product. Unit testing
also involves a precise definition of the test cases, testing criteria and

management of test cases.

Integration and System Testing

During the integration and system testing phase the different modules are
integrated in a planned manner. Integration of various modules are normally
carried out incrementally over a number of steps. During each integration step
previously planned modules are added to the partially integration system and the
resultant system is tested. Finally, after all the modules have been

successfully integrated and tested system testing is carried out.

The goal of system testing is to ensure that the developed system confirms to its
requirements laid out in the SRS document. System testing usually consists of
three different kinds of testing activities:
e ¢ —testing: o testing is the system testing performed by the development
team.
e [—testing: This is the system testing performed by a friendly set of
customers.

e Acceptance testing: This is the system testing performed by the customer

himself after the product delivery to determine whether to accept the
delivered product or to reject it.

System testing is normally carried out in a planned manner according to a
system test plan document. The results of information and system testing are

documented in the form of a test report.

Maintenance

Software maintenance is a very broad activity that includes error correction,
enhancement of capabilities and optimization. The purpose of this phase is to
preserve the value of the software over time. Maintenance involves performing

the following activities:

e Corrective Maintenance
This type of maintenance involves correcting error that were not
discovered during the product development phase.
e Perfective Maintenance
This type of maintenance involves improving the implementation of the
system and enhancing the functionalities of the system according to the
customer’s requirements.
e Adaptive Maintenance
Adaptive maintenance is usually required for reporting the softer to work

in a new environment.

Iterative Waterfall Model

The classical waterfall model is an idealistic one since it assumes that no
development error is ever committed by the engineers during any of the life
cycle phases. However in practical development environment, the engineers do
commit a large number of errors in different phases of the life cycle. The source
of the defects can be wrong assumptions, use of in appropriate technology,
communication gap among the project developers etc. These defects usually get
detected much later in the life cycle. Suppose a defect is detected at testing
phase the engineers need to go back to the phase where the defect had occurred
and correct the work done during that phase and the subsequent phases to
correct the defect and its effect on the later phases.

In any practical software development work it is not possible to strictly follow
the classical waterfall model.

Feedback paths are needed in the classical waterfall model from every phase to

its preceding phases.

Feasibility
Study

A

Requirement analysis
and specification

Design
A A 4
Coding and
unit testing
A v

Integration and
system testing

\ 4

Maintenance

F
h 4

Fig. 1.2 Iterative waterfall Model

It may not always be possible to detect all error in the same phase in which they
occur. The feedback paths allow for correction of the errors committed during a
phase, as and when these are detected. If during testing a design error is
identified then the feedback path allows the design to reworked and the changes
to be reflected in the design documents. However observe that there is no
feedback path to the feasibility stage. This means that the feasibility study error

can not be corrected.

Though errors are inevitable in almost every phase of development, it is
desirable to detect these errors in the same phase in which they occur. This can
reduce the effort required for correcting bugs. The principle of detecting errors
as close to there points of introduction as possible is known as phase

containment of errors. This is an important software engineering principle.

Prototyping Model

Prototyping is an attractive idea for complicated and large systems for which
there is no manual process or existing system to help to determine the

requirements.

The main principle of prototyping model is that the project is built quickly to
demonstrate the customer who can give more inputs and feedback. This model
will be chosen
» When the customer defines a set of general objectives for software but
does not provide detailed input, processing or output requirements.
» Developer is unsure about the efficiency of an algorithm or the new

technology is applied.

A prototype usually exhibits limited functional capabilities, low reliability and
inefficient performance compared to the actual software. A developed prototype
can help engineers to critically examine the technical issues associated with

product development.

Requirements
gathering

Refine
requirements
incorporating
customer
suggestions

The development of the prototype starts when the preliminary version of the
requirements specification document has been developed. A quick design is

carried out and the prototype is built. The developed prototype is submitted to

Quick
design

‘\

Customer evaluation
of prototype

Design

A 4

Implement

Build
Prototype

y

A 4

A

Maintain

Fig. 1.3 Prototyping Model of Software Development

the customer for his evaluation. Based on the experience, they provide

feedback to the developers regarding the prototype: what is correct, what needs
to be modified, what is missing, what is not needed etc. Based on the customer
feedback the prototype is modified and then the users and the clients are again
allowed to use the system. This cycle of obtaining customer feedback and

modifying the prototype continues till the customer approves the prototype.

After the finalization of software requirement and specification (SRS)
document, the prototype is discarded and actual system is then developed using

the iterative waterfall approach.

Prototyping is often not used, because that development costs may become
large. However in some situations, the cost of software development without
prototyping may be more than with prototyping. Prototype model is well suited
for projects where requirements are hard to determine. This model requires
extensive participation and involvement of the customer, which is not always

possible.

Evolutionary Model

This life cycle model is also referred as the successive versions model and the
incremental model. In this life cycle model the software is first broken down
into several modules or functional units which can be incrementally constructed

and delivered.

Fig. 1.4 Evolutionary model of software development

A, B, C are modules of a software product that are incrementally developed and
delivered.

The development team first develops the core modules of the system. That is
basic requirements are addressed but many supplementary features remain
undelivered. The initial product is refined into increasing levels of capability by
adding new functionalities in successive versions. Each evolutionary version
may be developed using an interactive waterfall model of development.

Rough requirements specification

l

Identify the core and other parts to
be developed incrementally

y

Develop the core part using an iterative
waterfall model

A 4

Collect customer feedback and modify
requirements

A

y

Develop the next identified features
using an iterative waterfall model

A

Maintenance

Fig. 1.5 Evolutionary Model of Software Development

Each successive version of the product is fully functioning software capable of
performing more useful work than the previous version. In this model the user
gets a chance to experiment with partially developed software much before the
complete version of the system is released. Therefore the evolutionary model
helps to accurately elicit user requirements during the delivery of the different

versions of the software and the change requests

after delivery of the complete software are minimized.

The evolutionary model is used when the customer prefers to receive the
products in increments rather than waiting for the full product to be developed
and delivered. The evolutionary model is very popular for object oriented

software development project.

The main disadvantage of the successive versions model is that for most
practical problems it is difficult to divide the problem into several functional
units which can be incrementally implemented and delivered. The evolutionary

model is normally useful for only very large products.

Spiral Model

The spiral model also known as the spiral life cycle model is a systems
development life cycle model used in information technology. This model of
development combines the features of the prototyping model, the waterfall
model and other models. The diagrammatic representation of this model appears

like a spiral with many loops.

2. Identifyand
resolve risks

1.ldetermine objectives
and identify alternative
solutions

N

. 3. Develop
4. Reviewand next level of
p:]an for next the product
phase

Fig. 1.6 Spiral Model of Software Development

Exact number of phases through which the product is developed in this model
Is not fixed. The number of phases varies from one project to another. Each
phase in this model is split into four sectors or quadrants:
e Planning: ldentifies the objectives of the phase and the alternative
solutions possible for the phase and constraints.

e Risk analysis: Analyze alternatives and attempts to identify and resolve

the risks involved.

e Development: Product development and testing product.

e Assessment: Customer evaluation.

During the first phase planning is performed, risks are analyzed, prototypes are
built and customers evaluate the prototype. During the second phase a second
prototype is evolved by a fourfold procedure: evaluating the first prototype in
terms of its strengths, weaknesses and risks, defining the requirements of the
second prototype, constructing and testing the second prototype. The existing
prototype is evaluated in the same manner as was the previous prototype and if
necessary another prototype is developed. After several iterations along the
spiral, all risks are resolved and the software is ready for development. At this

point, a waterfall model of software development is adopted.

The radius of the spiral at any point represents the cost incurred in the project
till then and the angular dimension represents the progress, made in the current

phase.

In the spiral model of development, the project team must decide how exactly to
structure the project into phases. The most distinguishing feature of this model
Is its ability to handle risks. The spiral model uses prototyping as a risk
reduction mechanism and also retains the systematic step-wise approach of the

waterfall model.

Spiral Model Strengths

% Provides early indication of risks, without much cost.
+« Critical high-risk functions are developed first.
+« Early and frequent feedback from users.

s Cumulative costs assessed frequently.

Spiral Model Weaknesses

% The model is complex.

% Risk assessment expertise is required.

% May be hard to define objectives.

% Spiral may continue indefinitely.

% Time spent planning, resetting objectives, doing risk analysis and

prototyping may be excessive.

Chapter - 2
Understanding Project Management

Contents
Software Project Management

Responsibility of Project Manager
Project Planning

Metrics for Project size estimation(LOC and FP)

Project Estimation Techniques _

COCOMO Models, Basic, Intermediate and complete
Scheduling

Organization and Team structure

Staffing

Risk Management

Configuration Management

Project Management Concepts

The main goal of software project management is to enable a group of software
engineers to work efficiently towards successful completion of the project. The
management of software development is dependent on four factors:

e The People

e The Product

e The Process

e The Project

People

Dependency
order

Project
Product

Process

Fig. 2.1 Factors of Management Dependency

Effective software project management focuses on these items in this order:
o The people
e Deals with the cultivation of motivated, highly skilled people.
e Consists of the stack holders, the team leaders, and the software
team.
o The Product
e Product objectives and scope should be established before a
project can be planned.
o The Process
e The software process provides the framework from which a
comprehensive plan for software development can be established.
o The Project
¢ Planning and controlling a software project is done for one primary
reason, it is the only known way to manage complexity.
e In a 1998 survey, 26% of software projects failed outright, 46%

experienced cost and schedule overruns.

Project Management

There are many software engineers involved in the development of a software
product. The primary job of the project manager is to ensure that the project is

completed within budget and on schedule.

Job Responsibilities of a Software Project Manager

e Software managers are responsible for planning and scheduling project
development. Manager must decide what objectives are to be achieved,
what resources are required to achieve the objectives, how and when the
resources are to be acquired and how the goals are to be achieved.

e Software managers takes responsibility for project proposal writing,
project cost estimation, project staffing, project monitoring and control,
software configuration management, risk management, interfacing with
clients, managerial report writing and presentation.

e Software managers monitor progress to check that the development is on
time and within budget.

Skills Necessary for Software Project Management

e Good qualitative judgment and decision-making capabilities

e Good knowledge of latest software project management
techniques such as cost estimation, risk management, configuration
management.

e Good communication skill and previous experience in managing similar
projects.

Project Planning

Software managers are responsible for planning and scheduling project

development. They monitor progress to check that the development is on time

and within budget. The first component of software engineering project

management is effective planning of the development of the software. Project

planning consists of the following activities:

Estimate the size of the project.

Estimate the cost and duration of the project. Cost and duration
estimation is usually based on the size of the project.

Estimate how much effort would be required?

Staff organization and staffing plans.

Scheduling man power and other resources.

The amount of computing resources (e.g. workstations, personal
computers and database software). Resource requirements are estimated
on the basis of cost and development time.

Risk identification, analysis.

Effort 5| Cost
Estimation Estimation
Size /
Estimation \
Duration | Project .| Scheduling
Estimation Staffing g

Fig. 2.2 Precedence Ordering among Planning Activities

Size estimation is the first activity. The size is the key parameter for the

estimation of other activities. Other components of project planning are

estimation of effort, cost, resources and project duration.

Sliding Window Technique

In this technique starting with an initial plan, the project is planned more
accurately in successive development stages. At the start of a project, project
manager have incomplete knowledge about the details of the project. The
information gradually improves as the project progress through different phases.
After the completion of every phase, the project manager can plan each

subsequent phase more accurately and with increasing levels of confidence.

Project Size Estimation Metrics, Line Of Control (LOC)
and Function Point Metric (FP)

The size of a project is obviously not the number of bytes that the source code
occupies. The project size is a measure of the problem complexity in terms
of the effort and time required to develop the product.
Two metrics are widely used to estimate size:

e Lines of Code (LOC)

e Function Point (FP)

Lines Of Code (LOC)

LOC can be defined as the number of delivered lines of code in software
excluding the comments and blank lines. LOC depends on the programming
language chosen for the project. The exact number of the lines of code can only
be determined after the project is complete since less information about the
project is available at the early stage of development.

In order to estimate the LOC count at the beginning of a project, project
managers usually divide the problem into modules and each modules into sub
modules and a so on until the sizes of the different leaf level modules can be

approximately predicted.

Disadvantages:

LOC is language dependent. A line of assembler is not the same as a line
of COBOL.

LOC measure correlates poorly with the quality and efficiency of the
code. A larger code size does not necessary imply better quality or higher
efficiency.

LOC metrics penalizes use of higher level programming languages, code
reuse etc.

It is very difficult to accurately estimate LOC in the final product from
the problem specification. The LOC count can be accurately computed

only after the code has been fully developed.

Function Point Metric

Function Points measure software size by quantifying the functionality
provided to the user based solely on logical design and functional
specifications

Function point analysis is a method of quantifying the size and
complexity of a software system in terms of the functions that the system
delivers to the user

It is independent of the computer language, development methodology,
technology or capability of the project team used to develop the
application.

Function point analysis is designed to measure business applications (not
scientific applications) .

Function points are independent of the language, tools, or methodologies
used for implementation

Function points can be estimated early in analysis and design

Since function points are based on the system user’s external view of

the system, non-technical users of the software system have a better
understanding of what function points are measuring.

Objectives of Function Point Counting

¢ Measure functionality that the user requests and receives

¢ Measure software development and maintenance independently of
technology used for implementation

Steps of Function Point Counting

¢ Determine the type of function point count

¢ ldentify the counting scope and application boundary
¢ Determine the Unadjusted Function Point Count

¢ Count Data Functions

¢ Count Transactional Functions

¢ Determine the Value Adjustment Factor

¢ Calculate the Adjusted Function Point Count

Function point metric estimates the size of a software product directly from the

problem specification.

The different parameters are:

Number Of Inputs:

Each data item input by the user is counted.

Number Of Outputs:

The outputs refers to reports printed, screen outputs, error messages
produced etc.

Number Of Inquiries:

It is the number of distinct interactive queries which can be made by the
users.

Number Of Files:

Each logical file is counted. A logical file means groups of logically related

data. Thus logical files can be data structures or physical files.

Number Of Interfaces:

Here the interfaces which are used to exchange information with other

systems. Examples of interfaces are data files on tapes, disks,

communication links with other systems etc.

Function Point (FP) is estimated using the formula:

FP = UFP (Unadjusted Function Point) * TCF (Technical Complexity

Factor)

UFP = (Number of inputs) * 4 + (Number of outputs) * 5 + (Number of
inquiries) * 4 + (Number of files) * 10 + Number of interfaces) * 10

TCF = DI (Degree of Influence) * 0.01

The unadjusted function point count (UFP) reflects the specific countable

functionality provided to the user by the project or application.

Example- Once the unadjusted function point (UFP) is computed, the

technical complexity factor (TCF) is computed next. The TCF refines the

UFP measure by considering fourteen other factors such as high transaction

rates, throughput and response time requirements etc. Each of these 14

factors is assigned a value from 0 (not present or no influence) to 6 (strong

influence). The resulting numbers are summed, yielding the total degree of

influence (DI). Now, the TCF is computed as (0.65+0.01*DI). As DI can

vary from 0 to 70, the TCF can vary from 0.65 to 1.35.

Finally FP = UFP *TCF

Feature Point Metric

Feature point metric incorporates an extra parameter in to algorithm complexity.

This parameter ensures that the computed size using the feature point metric

reflects the fact that the more the complexity of a function, the greater the effort

required to develop it and therefore its size should be larger compared to

simpler functions.

Project Estimation Techniques

The estimation of various project parameters is a basic project planning
activity. The project parameters that are estimated include:
e Project size(i.e. size estimation)
e Project duration
e Effort required to develop the software
There are three broad categories of estimation techniques:
e Empirical estimation techniques
e Heuristic techniques

e Analytical estimation techniques

Empirical Estimation Techniques

Empirical estimation techniques are based on making an educated guess of the
project parameters. While using this technique, prior experience with the

development of similar products is useful.

Heuristic Techniques

Heuristic techniques assume that the relationships among the different project
parameters can be modelled using suitable mathematical expressions. Once the
basic (independent) parameters are known, the other (dependent) parameters
can be easily determined by substituting the value of the basic parameters in the
mathematical expression. Different heuristic estimation models can be divided
Into two categories:

e Single variable model

e Multivariable model
A single variable estimation model takes the following form:

Estimated parameter = ¢;* e

Where e is a characteristics of the software, ¢; and d1 are constants.

A multivariable cost estimation model takes the following form:
Estimated Resource = ¢1 * ;% + ¢, * e, + ...

Where e, e,... are the basic characteristics of the software.

C1, C2, d1, d2... are constants.

Analytical Estimation Techniques

Analytical estimation techniques derive the required results starting with certain
basic assumptions regarding the project. This technique does have a scientific
basis.

Halstead’s Software Science an Analytical Estimation Techniques

Halstead’s software science is an analytical technique to measure size,
development effort, and development cost of software products. Halstead used a
few primitive program parameters to develop the expressions for the overall
program length, potential minimum volume, language level, and development
time.

For a given program, let:

¢ 11 be the number of unique operators used in the program

L 2

12 be the number of unique operands used in the program

L 2

N; be the total number of operators used in the program

¢ N3 be the total number of operands used in the program.
There is no general agreement among researchers on what is the most
meaningful way to define the operators and operands for different programming
languages.
For instance, assignment, arithmetic, and logical operators are usually counted
as operators. A pair of parentheses, as well as a block begin and block end pair,
are considered as single operators.
The constructs if......then.......else.....endif and a while do are treated as single

operators. A sequence operator ‘;’ is treated as a single operator.

Operators and Operands for the ANSI C Language

The following is a suggested list of operators for the ANSI C language:

({.,> *+-~1++-* /% +-<<>><><=>= === & " | && \ = *=
/= %= -= <<= >>= &= "= \=:.? { ; CASE DEFAULT IF ELSE SWITCH
WHILE DO FOR GOTO CONTINUE BREAK RETURN and a function
name in a function call.

Length and Vocabulary

The length of a program as defined by Halstead, quantifies the total usage of all
operations and operands in the program. Thus, length N = N1 + N3

The program vocabulary is the number of unique operators and operands used
in the program. Thus, program vocabulary n =11 + 12

Program Volume

The length of a program depends on the choice of the operators and operands
used.

V =Nlogzn

The program volume V is the minimum number of bits needed to encode the
program. In fact, to represent n different identifiers uniquely, we need at least
logz n bits. We need N logy 1 bits to store a program of length N. Therefore, the
volume V represents the size of the program by approximately compensating for
the effect of the programming language used.

Effort and Time

The effort required to develop a program can be obtained by dividing the
program volume by the level of the programming language used to develop the
code. Thus, effort E = VV / L, where E is the number of mental discriminations
required to implement the program and also the effort required to read and

understand the program.

Actual Length Estimation
Even though the length of a program can be found by calculation the total

number of operators and operands in a program.

N=n1 logz n1 + n2 l0g2 2

Empirical Estimation Techniques

Cost estimation is a part of the planning stage of any engineering activity. For
any new software project, it is necessary to know how much it will cost to
develop and how much development time it will take. Cost in a project is due to
the requirements for software, hardware and human resources. Hardware
resources such as computer time, terminal time and memory required for the
project, software resources include the tools and compilers needed during

development.

Cost estimates can be made either top-down or bottom-up. Top-down estimation
first focuses on system level costs such as the computing resources and personal
required to develop the system, quality assurance, system integration, training.
Bottom-up cost estimation first estimates the cost to develop each module or
subsystem. Those costs are combined to arrive at an overall estimate. Two

popular empirical estimation techniques are:

s Expert Judgment Technique

The most widely used cost estimation technique is the expert judgment, which is
an inherently top-down estimation technique. In this approach an expert makes
an educated guess of the problem size after analyzing the problem thoroughly.
The expert estimates the cost of the different modules or subsystems and then

combines them to arrive at the overall estimate.

However, this technique is subject to human errors and individual bias. An
expert making an estimate may not have experience and knowledge of all
aspects of a project. The advantage of expert judgment is the estimation made
by a group of experts. Estimation by a group of experts minimizes factors such

as lack of familiarity with a particular aspect of a project, personal bias.

% Delphi Cost Estimation

Delphi cost estimation approach tries to overcome some of the short comings of
the expert judgment approach. Delphi estimation is carried out by a team
consisting of a group of experts and a coordinator. The Delphi technique can be
adapted to software cost estimation in the following manner:

e A coordinator provides each estimator with the software requirement
specification (SRS) document and a form for recording a cost estimate.

e [Estimators study the definition and complete their estimates
anonymously and submit it to the coordinator. They may ask questions to
the coordinator, but they do not discuss their estimates with one another.

e The coordinator prepares and distributes a summary of the estimator’s
responses and includes any unusual rationales noted by the estimators.

e Based on this summary, the estimators re-estimate. This process is
iterated for several rounds. No group discussion is allowed during the

entire process.

COCOMO: A Heuristic Estimation Technique

COCOMO was proposed by Boehm. Boehm postulated that any software
development project can be classified into one of the following three categories

based on the development complexity: organic, semidetached, and embedded.

e Organic: In the organic mode the project deals with developing a well-
understood application program. The size of the development team is
reasonably small, and the team members are experienced in developing
similar types of projects.

e Semidetached: In the semidetached mode the development team consists
of a mixture of experienced and inexperienced staff. Team members may
have limited experience on related systems but may be unfamiliar with
some aspects of the system being developed.

e Embedded: In the embedded mode of software development, the project
has tight constraints, which might be related to the target processor and

its interface with the associated hardware.

According to Boehm, software cost estimation should be done through three
stages: basic COCOMO, intermediate COCOMO, and complete COCOMO.

Basic COCOMO

The basic COCOMO model gives an approximate estimate of the project
parameters. The basic COCOMO estimation model is given by the following
expressions:
Effort = a; x (KLOC)?*? PM Tdev
= by x (Effort) ® Months
Where
(i) KLOC is the estimated size of the software product expressed in Kilo Lines
of Code,
(i) a;, a2, b1, by are constants for each category of software products,
(iii) Tdev is the estimated time to develop the software, expressed in months,
(iv) Effort is the total effort required to develop the software product, expressed

in person months (PMs).

Intermediate COCOMO

The basic COCOMO model allowed for a quick and rough estimate, but it
resulted in a lack of accuracy. Basic model provides single-variable (software
size) static estimation based on the type of the software. A host of the other
project parameters besides the product size affect the effort required to develop

the product as well as the development time.

Intermediate COCOMO provides subjective estimations based on the size of the
software and a set of other parameters known as cost directives. This model
makes computations on the basis of 15 cost drivers based on the various
attributes of software development. Cost drivers are used to adjust the nominal
cost of a project to the actual project environment, hence increasing the
accuracy of the estimate.
The cost drivers are grouped into four categories:

e Product attributes

e Computer attributes

e Personnel attributes

e Development environment
Product
The characteristics of the product data considered include the inherent
complexity of the product, reliability requirements of the product, database size
etc.
Computer
The characteristics of the computer that are considered include the execution
speed required, storage space required etc.

Personnel

The attributes of development personnel that are considered include the experience

level of personnel, programming capability, analysis capability etc.

Development Environment
The development environment attributes capture the development facilities

available to the developers.

Complete COCOMO / Detailed COCOMO

Basic and intermediate COCOMO model considers a software product as a
single homogeneous entity. Most large system are made up of several smaller
subsystem. These subsystems may have widely different characteristics. Some
subsystem may be considered organic type, some embedded and some
semidetached. Software development is executed in different phases and hence
the estimation of efforts and schedule of deliveries should be carried out phase
wise. Detailed COCOMO provides estimated phase-wise efforts and duration of

phase of development.

Detailed COCOMO classifies the organic, semidetached, and embedded project
further into small, intermediate, medium and large-size projects based on the
size of the software measured in KLOC. Based on this classification, the
percentage of efforts and schedule have been allocated for different phase of the
project, viz. software planning, requirement analysis, system designing, detailed
designing, coding, unit testing, integration and system testing. Total effort is
estimated separately. This approach reduces the margin of error in the final

estimate.

Effect of Schedule Change on Cost
Only few number of engineers are needed at the beginning of the project to
carry out planning and specification tasks. As the project progress and more

detailed work is required, the number of engineers reaches a peak.

By using the Putnam’s proposed expression for L,

K=(L%)/(Cy° (ta)*
Or
K=C/ (ty)* (Since C = (L3)/ (Ck)?) is a constant)
o Where K is the total effort expended (in PM) in the product development
and L is the product size in KLOC.
e {4 is the time required to develop the software.
e Cy s the state of technology constant and reflects constraints that impede
the progress of the programmer.
From the expression, it can be observed that when the schedule of the project is
compressed, the required effort increases.
The Putnam estimation model works reasonably well for very large systems,

but seriously overestimates the effort on medium and small systems.

Jensen Model for Staffing Level Estimation

Jensen model is very similar to Putnam model. However, it attempts to soften
the effect of schedule compression on effort to make it applicable to smaller and
medium sized projects. Jensen proposed the equation:

L=Ce ta K"
Where Ci is the effective technology constant, tq is the time to develop the

software, and K is the effort needed to develop the software.

Tools for Scheduling

Scheduling the project tasks is an important project planning activity.
Scheduling involves deciding which tasks would be taken up when. In order to
schedule the project activities, a software project manager needs to do the

following.

i) Identify all the tasks necessary to complete the project.

ii) Break down larger tasks into a logical set of small activates which would be
assigned to different engineers.

iii) Create the work break down structure and to find the dependency among the
activates. Dependency among the different activates determines the order in
which the different activates would be carried out.

iv) Establish the most likely estimates for the time durations necessary to

complete the activities.

v) Resources are allocated to each activity. Resource allocation is typically
done using a Gantt chart.

vi) Plan the starting and ending dates for various activities. The end of each

activity is called a milestone.

Vii) Determine the critical path.

A critical path is the chain of activities that determine the duration of the project.

The first step in scheduling a software project involves identifying all the tasks
necessary to complete the project. Next, the large tasks are broken down into

logical set of small activities which would be assigned to different engineers.

After the project manager has broken down the task and created the work
breakdown structure, he has to find the dependency among the activities.
Dependency among the different activities determines the order in which the
different activities would be carried out. If an activity A requires the results of
another activity B, then activity A must be scheduled after activity B. The task

dependencies define a partial ordering among tasks.

Once the activity network representation has been worked out, resources are
allocated to each activity. Resource allocation is typically done using a Gantt
chart. After resource allocation is done, a Project Evaluation and Review
Technique chart representation is developed. The PERT chart representation is

suitable for program monitoring and control.

Use of Work Breakdown Structure, Activity Networks, Gantt
Chart and PERT in Scheduling

Work Breakdown Structure

Most project control techniques are based on breaking down the goal of the
project into several intermediate goals. Each intermediate goal can be broken
down further. This process can be repeated until each goal is small enough to be

well understood.

Work breakdown structure (WBS) is used to decompose a given task set
recursively into small activities. In this technique, one builds a tree whose root
is labelled by the problem name. Each node of the tree can be broken down into
smaller components that are designated the children of the node. This “work
breakdown” can be repeated until each leaf node in the tree is small enough to
allow the manager to estimate its size, difficulty and resource requirements.

The goal of a work breakdown structure is to identify all the activities that a

project must undertake.

MIS
Application

Requirements Design Code Test Document
Specification

Data base Graphical Data base Graphical
part user part user
interface interface
part part

Fig. 2.3 Work breakdown structure of an MIS problem

The task is broken down into a large number of small activities; these activities
can be distributed to a large number of engineers. Thus it becomes possible to
develop the product faster. Therefore, to be able to complete a project in the
least amount of time the manager needs to break large tasks into smaller
subtasks, expecting to find more parallelism. In scheduling the manager decide
the order in which to do these tasks.

Two general scheduling techniques are Gantt Charts and PERT Charts.

Activity Networks and Critical Path Method

Work Breakdown Structure representation of a project is transformed into an
activity network by representing the activities identified in work breakdown
structure along with their interdependencies. An activity network shows the
different activities making up a project, their estimated durations and

interdependencies.

Design Code database
:> database part part 120
45

Requirements
specification 15

Integration
and test 120

Finish

Design GUI
part 30

Code GUI
part45

A 4

Write user
manual 60

Fig. 2.4 Activity Network representation of the MIS problem

Managers can estimate the time duration for the different tasks in several ways.
A path from the start node to the finish node containing only critical tasks is
called a critical path.
e Critical Path Method
e From the activity network Fig.2.4 representation, the following
analysis can be made:
e The minimum time (MT) to complete the project is the maximum of all
paths from start to finish.
e The earliest start (ES) time of a task is the maximum of all paths from the
start to this task.
e The latest start (LS) time is the difference between MT and the maximum
of all paths from this task to the finish.

e The earliest finish time (EF) of a task is the sum of the earliest start time
of the task and the duration of the task.

e The latest finish (LF) time of a task can be obtained by subtracting
maximum of all paths from this task to finish from MT.

e The slack time (ST) is LS — EF and equivalently can be written as LF —
EF. The slack time is the total time for which a task may be delayed
before it would affect the finish time of the project. The slack time
indicates the flexibility in starting and completion of tasks.

e A critical task is one with a zero slack time.

e A path from the node to the finish node containing only critical tasks is
called a critical path.

e The above parameters for different tasks for the MIS problem (Fig.2.4)
are shown in the following table.

Task ES EF LS LF ST
Specification Part 0 15 0 15 0
Design Database Part 15 60 15 60 0
Design GUI Part 15 45 90 120 |75
Code Database Part 60 165 60 165 |0
Code GUI Part 45 90 120 165 75
Integrate and Test 165 | 285 165 (285 |0
White User Manual 15 75 225 285 |210

The critical paths are all the paths whose duration equals MT. The critical path

in Fig.2.4 is shown with thick arrow lines.

Gantt Chart

Gantt charts are a project control technique that can be used for several purposes
including scheduling, budgeting and resource planning. Gantt Charts are mainly

used to allocate resources to activities. A Gantt chart is a

special type of bar chart where each bar represents an activity. The bars are

drawn against a time line. The length of each bar is proportional to the duration

of the time planned for the corresponding activity.

now 1

janl janl3 feh 15 roarch 1 aprl 1 Tl 1
T T T

| ; : . ; !
' ' ' Z |
T 1
Start ' ! : : I
Recpuirement ! . ! I
sprification : ' | !
| ! '
1 |
Deesign Datahase Part : | ,
| [|
- | I
Diesign GUT Part . | |
| I
I , : |
! . Code Database Part |
| | ' |
| Code GUI Part !
I I I

: © hprls Integrate and test
I Write nser marual I I
| ! 1 |
1) |
1 | .

Grantt Chart representation of the MIS f‘mblem
Fig. 2.5 Gantt Chart Representation of the MIS Problem

In the Gantt Chart the bar consists of a write part and a shaded part. The shaded

part of the bar shows the length of time each task is estimated to take. The white

part shows the slack time, that is the latest time by which a task must be

finished.

PERT (Project Evaluation and Review Technique) Charts

PERT controls time and cost during the project and also facilities finding the

right balance between completing a project on time and cost during the project

and also facilitates finding the right balance between completing a project on

time and completing it within a budget.

A PERT Chart is a network of boxes (or circles) and arrows. The boxes
represent activities and the arrows are used to show the dependencies of
activities on one another. The activity at the head of an arrow cannot start until
the activity at the tail of the arrow is finished. The boxes in a PERT Chart can
be decorated with starting and ending dates for activities. PERT Chart is more

useful for monitoring the timing progress of activities.

Database Code

Preparation of Y design database

softvyare Design part
requirement

specification

A 4

A 4

Integration [—p| Finish
and testing

GUI
design

Code GUI
part

A 4

Fig.2.6 PERT Chart representation of the MIS problem

PERT Chart shows the interrelationship among the tasks in the project and

identifies critical path of the project.

Organisation Structure

There are essentially two broad ways in which a software development
organization can be structured: function format and project format. In the
project format, the development staff are divided based on the project for which
they work. In the functional format, the development staff are divided based on
the functional group to which they belong to . The different projects bellow
engineers from functional groups for specific phases of the projects and return

them to their functional group upon compl etion of the phase.

Top Management

Functional Group

Top Management Requirements

Design
Coding
Project Project Tespng
Team 1 Teamn II:\’/II’Oject t
anagemen

Maintenance

Fig. Project Organization

Project
Team 1

4 Project
Teamn

Fig.2.7 Functional
organization

In the functional format, different teams of programmers perform different
phases of a project.

For example, one team might do the requirements specification, another do the
design, and so on. The partially completed product passes from one team to
another as the product evolves. Therefore, the functional format requires
considerable communication among the different teams because the work of one
team must be clearly understood be team must be clearly understood by the

subsequent teams working on the project.

In the project format, a set of engineers are assigned to the project at the start of
the project and they remain with the project till the completion of the project.
Thus, the same team carries out all the life cycle activities. Obviously, the
functional format requires more communication among teams than the project
format, because one team must understand the work done by the previous

teams. The main advantages of a functional organization are:

= Ease of staffing
» Production of good quality documents
= Job specialization

= Efficient handling of the problems associated with manpower turnover

The functional organisation allows engineers to become specialists in their
particular roles, e.g. requirements analysis, design, coding, testing, maintenance
etc. the functional organisation also provides an efficient solution to the staffing
problem. A project organisation structure forces the manager to take in almost a

constant number of engineers for the entire duration of the project.

Team Structure

Team structures address the issue of organization of the individual teams. Three
format team structures are:

= Chief programmer

= Democratic

» Mixed team organization

Chief Programmer Team

In this organization, a senior engineer provides the technical leadership and is
designated as the chief programmer. The chief programmer partitions the task

into small activities and assigns them to the team members.

Project Manager

(Software engineers)
Fig. 2.8 Chief programmer team structure
The chief programmer provides an authority. The chief programmer team leads
to lower team morale, since the team members work under the constant
supervision of the chief programmer. This also inhibits their original thinking.
The chief programmer team is probably the most efficient way of completing
and small projects. The chief programmer team structure works well when the

task is within the intellectual grasp of a single individual.

Democratic Team

The democratic team structure does not enforce any formal team hierarchy.
Typically a manager provides the administrative leadership. At different times,

different members of the group provide technical leadership.

Spftware engineer

“—Communication pat

Fig.2.9 Democratic team structure

The democratic organization leads to higher morale and job satisfaction. The
democratic team structure is appropriate for less understood problems, since a
group of engineers can invent better solutions than a single individual as in a
chief programmer team. A democratic team structure is suitable for projects
requiring less than five or six engineers and for research-oriented projects. The
democratic team organization encourages egoless programming as programmers

can share and review one another’s work.

Mixed Control Team Organization

The mixed team organization draws upon the ideas from both the democratic
organization and the chief programmer organization. This team organization

incorporates both hierarchical reporting and democratic set-up.

Project manager

Reporting

Senior engineers

Software
engineers

Communication

Fig.2.10 Mixed team structure

The mixed control team organization is suitable for large team sizes. The
democratic arrangement at the senior engineers level is used to decompose the
problem into small parts. Each democratic set-up at the programmer level
attempts to find solution to a single part. This team attempts to find solution to a
single part. This team structure is extremely popular and is being used in many

software development companies.

Importance of Risk Identification, Risk Assessment and Risk

Containment with reference to Risk Management
Risk management is an emerging area that aims to address the problem of
identifying and managing the risk associated with a software project. Risk in a
project is the possibility that the defined goals are not met. The basic motivation

of having risk management is to avoid heavy looses.

Risk is defined as an exposure to the chance of injury or loss. That is risk
implies that there is possibility that something negative may happen. In the
content of software project, negative implies that there is an adverse effect on
cost, quantity or schedule. Risk management aims at reducing the impact of all
kinds of risk that might affect a project.
Risk management consist of three essential activities:

¢ Risk identification

¢ Risk assessment

e Risk containment

Risk Identification

A project can get affected by a large variety of risks. Risk identification
identifies all the different risks for a particular project. In order to identify the
important risks which might affect a project, it is necessary to categorize risk in
to different classes. There are three main categories of risks which can affect a
software project are:

» Project Risks

Project risks concern various forms of budgetary, schedule, personal, resource
and customer- related problems. Software is intangible, it is very difficult to
monitor and control a software project.

= Technical Risks

Technical risk concern potential design, implementation, interfacing, testing,
and maintenance problem. Technical risks also include incomplete
specification, changing specification, technical uncertainly. Most technical risks
occur due the development teams insufficient knowledge about the product .

= Business risks

Business risks include risks of building an excellent product that no one wants,

losing budgetary or personal commitments etc.

Risks Assessment

The goal of risks assessment is to rank the risks so that risk management can
focus attention and resources on the more risks items. For risks assessment,
each risk should be rated in two ways:

a> The likelihood of a coming true (r)

b> The consequence of the problem associated with that risk(s)

The priority of each risk can be computed as
p=r*s

Where p is the priority with which the risk must be handled, r is the probability
of the risk becoming true and s is the severity of damaged caused due to the risk

becoming true .

Risk Containment

After all the identified risk of a project is assessed, plans must be made to
contain the most damaging and the most likely risks. Three main strategies used
for risks containment are:

» Avoid the risk

» Risk reduction

» Transfer the risk

Avoid the Risk
This may take several forms such as discussions with the customer to reduce the

scope of the work and giving incentives to engineers to avoid the risk of
manpower turnover etc.
Transfer the Risk
This strategy involves getting the risky component develop by a third party or
buying insurance cover etc.

Risk Reduction
This involves planning ways to contain the damage due to a risk.
Risk leverage = (risk exposure before reduction — risk exposure after reduction)
/ (Cost of reduction)

Contents

Chapter-3

Requirement Analysis and specification

Requirements gathering and analysis
Software Requirements Specification
Contents of SRS

Characteristics of Good SRS
Organization of SRS

Techniques for representing complexing logic

Need for Requirement Analysis

Requirement analysis is a Software engineering task that bridges the gap

between system level requirements engineering and software design.

Requirement analysis provides software designer with a representation of

system information, function, and behavior that can be translated to data,

architectural, and component-level designs.

Software requirement analysis may be divided into five areas of effort:

v

D N N NN

Problem recognition
Evaluation and synthesis
Modeling

Specification

Review

Steps in Requirements Elicitation for Software: Initiating the
Process, Facilitated Application Specification Techniques, Quality
Function Deployment

Before requirements can be analyzed, modeled or specified they must be

gathered through an elicitation process.

Initiating the Process

The most commonly used requirements elicitation technique is to conduct
a meeting or interview. Customer meetings are the most commonly used

technique.

Use context free questions to find out customer's goals and benefits,
identify stakeholders, gain understanding of problem, determine customer

reactions to proposed solutions, and assess meeting effectiveness.

Facilitated Application Specification Techniques

Meeting held at neutral site, attended by both software engineers and

customers.
Rules established for preparation and participation.

Agenda suggested to cover important points and to allow for

brainstorming.
Meeting controlled by facilitator (customer, developer, or outsider).

Goal is to identify problem, propose elements of solution, negotiate
different approaches, and specify a preliminary set of solution

requirements.

Quality Function Deployment (QFD)

Quality function deployment is a quality management technique that translates
the needs of the customer into technical requirements for software. Quality

function deployment identifies three types of requirements:

e Normal requirements: The objectives and goals that are stated for a
product or system during meetings with the customer.

e Expected requirements: These requirements are implicit to the
product or system (customers assumes will be present in a
professionally developed product without having to request them

explicitly).

e EXxciting requirements: These features that go beyond the customer's
expectations and prove to be very satisfying when they are present.

Function deployment is used to determine the value of each function that is
required for the system. Information deployment identifies both the data objects
and events that the system must consume and produce. Task deployment
examines the behavior of the system or product within the context of its
environment. Value analysis used to determine the relative priority of

requirements during function, information, and task deployment.

Principles of Analysis
All analysis methods are related by a set of operational principles:

* The information domain of the problem must be represented and

understood.
» The functions that the software is to perform must be defined.

» Software behavior must be represented

* Models depicting information function and behavior must be

partitioned in a hierarchical manner that uncovers detail.

» The analysis process should move from the essential information toward

Implementation detail.

Software Prototyping

The prototyping paradigm can be either close-ended or open-ended. The close-
ended approach is called throwaway prototyping and an open-ended approach

called evolutionary prototyping.

Prototyping Approach

Throwaway prototyping: Prototype only used as a demonstration of product

requirements.

Evolutionary prototyping uses the prototype as the first part of an analysis

activity that will be continued into design and construction.

The customer must interact with the prototype, it is essential that:
a) Customer resources must be committed to evaluation and refinement of
the prototype.
b) Customer must be capable of making requirements decisions in a timely

manner.

Prototyping Tools and Methods

Three generic classes of methods and tools are:
» Fourth generation techniques: Fourth generation techniques (4GT)
tools allow software engineer to generate executable code quickly.
* Reusable software components: Assembling prototype from a set of
existing software components.
« Formal specification and prototyping environments can interactively

create executable programs from software specification models.

Software Requirement Specification Principle

Specification principles are:

« Separate functionality from implementation.

» Develop a behavioral model that describes functional responses to all
system stimuli.

« Define the environment in which the system operates and indicate how
the collection of agents will interact with it.

+ Create a cognitive model rather than an implementation model

« Recognize that the specification must be extensible and tolerant of
incompleteness.

« Establish the content and structure of a specification so that it can be

changed easily.

SRS Document

The requirements analysis and specification phase starts once the feasibility
study phase is completed and the project is found to be financially sound and
technically feasible. The goal of the requirement analysis and specification
phase is to clearly understand the customer requirements and to systematically
organize these requirements in a specification document. This phase consists of
two activities:

e Requirements gathering and analysis.

e Requirements specification

System analysts collect data pertaining to the product to be developed and
analyze these data to conceptualize what exactly needs to be done. The analyst
starts the requirements gathering and analysis activity by the collecting all
information from the customer which could be used to develop the requirements

of the system. The analyst then analyzes the collect

information to obtain a clear and thorough understanding of the product to be
developed.

Two main activities involved in the requirements gathering and analysis phase
are:

» Requirements Gathering: The activity involves interviewing the end- users

and customers and studying the existing documents to collect all possible
information regarding the system.
» Analysis of Gathered Requirements : The main purpose of this activity is

to clearly understand the exact requirements of the customer. The analyst

should understand the problems:

e What is the problem?

e Why is it important to solve the problem?

e What are the possible solutions to the problem?

e \What exactly are the data input to the system and what exactly the data

output required of the system?

e What are the complexities that might arise while solving the problem?
After the analyst has understood the exact customer requirements, he proceeds
to identify and resolve the various requirements problems.

There are three main types of problems in the requirement that analyst
needs to identify and resolve:

» Anomaly

» Inconsistency

» Incompleteness

Anomaly: An anomaly is an ambiguity in the requirement. When a requirement

Is anomalous, several interpretation of the requirement are possible.

Example: In a process control application, a requirement expressed by one user
Is that when the temperature becomes high, the heater should be switched off.
(Words such as high, low, good, bad etc, are ambiguous without proper
quantification). If the threshold above which the temperature can be considered
to be high is not specified, then it can be interpreted differently by different
people.

Inconsistency: Two requirements are said to be inconsistent, if one of the
requirements contradicts the other two-end user of the system give inconsistent

description of the requirement.

Example: For the case study of the office automation, one of the clerk described
that a student securing fail grades in three or more subjects should have to
repeat the entire semester. Another clerk mentioned that there is no provision
for any student repeat a semester.

Incompleteness: An incomplete set of requirements is one in which some

requirements have been overlooked.

Software Requirement Specification

After the analyst has collected all the required information regarding the
software to be developed and has removed all incompleteness, inconsistencies
and anomalies from the specification, analyst starts to systematically organize
the requirements in the form of an SRS document. The SRS document usually
contains all the user requirements in an informal form.
Different People need the SRS document for very different purposes. Some of
the important categories of users of the SRS document and their needs are as
follows.
e Users, customers and marketing personnel
The goal of this set of audience is to ensure that the system as describe

in the SRS document will meet their needs.

The software developers refer to the SRS document to make sure that
they develop exactly what is required by the customer.

Test Engineers: Their goal is to ensure that the requirements are
understandable from a functionality point of view, so that they can test
the software and validate its working.

User Documentation Writers: Their goal in reading the SRS document is
to ensure that they understand the document well enough to be able to
write the users’ manuals.

Project Managers

They want to ensure that they can estimate the cost of the project easily
by referring to be SRS document and that it contains all information
required to plan the project.

Maintenance Engineers

The SRS document helps the maintenance engineers to understand the
functionalities of the system. A clear knowledge of the functionalities can

help them to understand the design and code.

Contents of the SRS Document

An SRS document should clearly document:

Functional Requirements
Nonfunctional Requirements

Goals of implementation

The functional requirements of the system as documented in the SRS

document should clearly describe each function which the system would

support along with the corresponding input and output data set.

systerm

output
input — 7

Fig. 3.1 Contents of SRS Document

The non-functional requirements also known as quality requirements. The non-
functional requirements deal with the characteristics of the system that cannot
be expressed as functions.

Examples of nonfunctional requirements include aspects concerning
maintainability, portability and usability, accuracy of results. Non-functional
requirements arise due to user requirements, budget constraints, organizational
policies and soon.

The goals of implementation part of the SRS document gives some general
suggestion regarding development. This section might document issues such as
revisions to the system functionalities that may be required in the future, new

devices to be supported in the future.

Characteristics and Organization of SRS Document
Characteristics of SRS document

Concise: The SRS document should be concise, unambiguous, consistent and
complete. Irrelevant description reduced readability and also increases error

possibilities.

Structured: The SRS document should be well-structured. A well-structured

document is easy to understand and modify.

Block-box View: It should specify what the system should do. The SRS
document should specify the external behavior of the system and not discuss the
implementation issues. The SRS should specify the externally visible behavior
of the system. [For this reason the SRS document is called the block-box

specification of a system.]

Conceptual Integrity : The SRS document should exhibit conceptual integrity so
that the reader can easily understand the contents.

Verifiable: All requirements of the system as documented in the SRS document
should be verifiable if and only if there exists some finite cost- effective process
with which a person of machine can check that the software meets the
requirement.

Modifiable : The SRS is modifiable if and only if its structure and style are such
that any changes to the requirements can be made easily, completely and
consistently while retaining the structure and style.

Organization of the SRS Document

Organization of the SRS document and the issues depends on the type of the
product being developed. Three basic issues of SRS documents are: functional
requirements, non functional requirements, and guidelines for system
implementations. The SRS document should be organized into:
1. Introduction
(a) Background
(b)Overall Description
(c)Environmental Characteristics

(i)Hardware

(it)Peripherals

(iii)People
1. Goals of implementation Functional

requirements

Nonfunctional Requirements
Behavioural Description

(a) System States

(b) Events and Actions

The “introduction’ section describes the context in which the system is being
developed, an overall description of the system and the environmental
characteristics. The environmental characteristics subsection describes the
properties of the environment with which the system will interact.

Chapter-4
Software Design

Contents

What is a Good S/W design
Cohesion and coupling

Neat arrangement

S/W Design approaches

Structured analysis

Data Flow Diagrams

Symbols used in DFD

Designing DFD

Developing DFD model of a system
Shortcomings of DFD

Structured design

Principles of transformation of DFD to Structure Chart

Transform analysis and Transaction Analysis
Design Review

Importance of Software Design

Software design aims to plan and create a blueprint for the implementation of
the software. The main aim and focus of the software design process is to cover
the gap between understanding the specification and implementing them in the
software. Software design transforms the SRS document into implementable
form using a programming language. The design representations are used to
describe how the system is to be structured and developed to meet the
specification in the best manner.
The following items are designed and documented during the design phase.

e Different modules in the solution should be cleanly identified. Each

module should be named according to the task it performs.

« The control a relationship exists among various modules should be

identified in the design document. The relationship is also known as the call
relationship.

« Interface among different modules. The interface among different
modules identifies the exact data items exchanged among the modules.

« Data structures of the individual modules.

« Algorithms required to implement the individual modules.

Design Principles and Concepts

Design Principles
Software design is both a process and a model. The design process is a sequence
of steps that enable the designer to describe all aspects of the software to be
built. Basic design principles are:
o The design process should not suffer from “tunnel vision”.
o The design should be traceable to the analysis model.
o The design should not reinvent the wheel.

The design should “minimize the intellectual distance” between the
software and the problem in the real world.

©)

The design should exhibit uniformity and integration.
The design should be structured to accommodate change.
The design should be structured to degrade gently.
Design is not coding.

The design should be assessed for quality.

O O O O O O

The design should reviewed to minimize conceptual errors.

Design Concepts

Abstraction: Each step in the software engineering process is a refinement in the
level of abstraction of the software solution.

- Data abstractions: a named collection of data

- Procedural abstractions: A named sequence of instructions in a
specific function
- Control abstractions: A program control mechanism without

specifying internal details.

The design process takes the SRS documents as the input and is dedicated to
plan for implementation of the software. The design activities are classified into
two parts.

e Preliminary(or high-level)design

e Detailed design

Preliminary Design / High-Level Design

Through high-level design, a problem is decomposed into a set of modules, the
control relationships among various modules identified and also the interfaces
among various modules are identified. The outcome of high-level design is
called the program structure or the software architecture many different types of
notations have been used to represent a high-level design. A popular way is to
use a tree-like diagram called the structured chart to represent the control
hierarchy in high-level design. Another popular design representation technique
called UML that is being used to document object- oriented design. Once the

high-level design is complete, detailed design is undertaken.

Detailed Design

During detailed design, the data structure and the algorithms of different
modules are designed. The outcome of the detailed design stage is usually

known as the module specification document.

What is a Good Software Design

There is no unigue way to design a system. Using the same design
methodology, different engineers can arrive at very different design solutions.
Even the same engineer can work out many different solutions to the same

problem.

The definition of “a good software design” can vary depending on the
application for which it is being designed. For example, the memory size used
up by a program may be an important issue to characterize a good solution for
embedded software development-since embedded applications are often
required to be implement using memory of limited size due to space, cost or
power consumption constraints. For embedded applications, factors such as
design comprehensibility may take a back seat while judging the goodness of
design. For embedded applications, one may sacrifice design comprehensibility
to achieve code compactness. Therefore, the criteria used to judge how good a
given design solution is can vary widely depending on the application. The
goodness of a design is dependent on the targeted application. Different
characteristics of a software design are:

Correctness: A good design should correctly implement all the functionalities
of the system.

Understandability: A good design should be easily understandable.
Efficiency: A good design solution should adequately address resource, time
and cost optimization issues.

Maintainability: A good design should be easy to change.

In order to facilitate understandability of a design, the design should have the following

features:

e It should assign consistent and meaningful names for various design
components.

e The design should be modular. The term modularity means that it should
use a cleanly decomposed set of modules.

It should neatly arrange the modules in a hierarchy, e.g. tree-like diagram.

Modularity

A modular design achieves effective decomposition of a problem. It is a basic
characteristic of any good design solution. Decomposition of a problem into
modules facilitates the design by taking advantage of the divide and conquers
principle. If different modules are independent of each other, then each module
can be understood separately. This reduces the complexity of the design

solution.

Clean Decomposition

The modules in a software design should display high cohesion and low
coupling. The modules are more or less independent of each other.

Layered Design

In a layered design, the modules are arranged in a hierarchy of layers. A module
can only invoke functions of the modules in the layer immediately below it. A
layer design can make the design solution easily understandable. A layer design
can be considered to be implementing control abstraction, since a module at a

lower layer is unaware of the higher layer modules.

Cohesion and Coupling

A good software design implies clean decomposition of the problem into
modules and thereafter the neat arrangement of these modules. The primary
characteristics of a neat module decomposition are high cohesion and low
coupling. Cohesion is a measure of the functional strength of a module where as
the coupling between two modules is a measure of the degree of

interdependence or interaction between the two modules. A modules having

high cohesion and low coupling is said to be functionally independent of other
modules. A cohesive module performs a single task or function.

Cohesion

Cohesion is a measure of the strength of the relationship between
responsibilities of the components of a module. A module is said to be highly
cohesive if its components are strongly related to each other by some means of
communication or resource sharing or the nature of responsibilities. High
cohesion facilitates execution of a task by maximum intra-modular
communication and least inter-module dependencies. It promotes
independencies between different modules.

Error isolation

Functional independence reduces error propagation. If a module is functionally
independent, its degree of interaction with other modules is less. Therefore, any
error existing in a module would not directly affect the other modules.

Scope for Reuse

Reuse of a module becomes possible, because each module does some well-
defined and precise functions and the interface of the module with other module
is simple and minimal. Therefore a cohesive module can be easily taken out and
be reused in a different program.

Understandability

Complexity of the design is reduced, because different modules are more or less

independence of each other and can be understood in isolation.

Classification of Cohesiveness

There are seven types or levels of cohesion.

Coincidental | Logical | temporal | Procedural | communication sequential functional

Low —) High
Fig. 4.1 Classification of Cohesion

Coincidental is the worst type of cohesion and functional is the best cohesion.
Coincidental Cohesion

A module is said to have coincidental cohesion, if it performs a set of tasks that
relate to each other very loosely, if at all. In this case the module contains a
random collection of functions.

The different functions of the module carry out. The different unrelated
activities are issuing of librarian leave request.

Logical Cohesion

A module is said to be logically cohesive, if all elements of the module perform
similar operations. For example, consider a module that consists of a set of print
functions to generate various types of output reports such as salary slips annual
reports etc.

Temporal Cohesion

When a module contains functions that are related by the fact that all the
functions must be executed in the same time span, the module is said to exhibit
temporal cohesion. For example, consider the situation: when a computer is
booted, several functions need to be performed.

These include initialization of memory and devices, loading the operating
system etc. When a single module performs all these tasks, then the module can

be said to exhibit temporal cohesion.

Procedural Cohesion

A module is said to possess procedural cohesion, if the set of functions of the
module are executed one after the other, though these functions may work
entirely different purposes and operate on different data. For example, in an
automated teller machine(ATM),member-card validation is followed by
personal validation by personal identification number and following this, the
request option menu is displayed.

Communication Cohesion

A module is said to have communicational cohesion, if all functions of the
module refer to or update the same data structure.

Sequential Cohesion

A module is said to possess sequential cohesion, if the different functions of the
module execute in a sequence, and the output from one function is input to the
next in the sequence.

Functional Cohesion

A module is said to possess functional cohesion, if different function of the
module cooperate to complete a single task.

The functions issue-book (), return-book (), query-book () and find borrower ()
together manage all activities concerned with book lending.

Classification of Coupling

The coupling between two modules indicates the degree of interdependence
between modules. Two modules with high coupling are strongly interconnected
and thus dependent on each other. Two modules with low coupling are not
dependent on one another.”Uncoupled” modules have no interconnections, they

are completely independent.

O O
o O

Fig. 4.2 Uncoupled: No Dependencies

()
;

Fig. 4.3 Loosely coupled: Fig. 4.4 Highly coupled:
some dependencies many dependencies

A good design will have low coupling. Coupling is measured by the number of
interconnections between modules. Coupling increases as the number of calls
between modules increases.

Different types of coupling are:

Data Coupling

It is a type of loose coupling and combines modules by passing some
parameters from one module to another. The parameters that are passed are
usually atomic data type of programming language. Eg an integer, a float, a
character etc. This data item should be problem related and not used for control

purposes.

Data Stamp Control Common Content

Fig. 4.5 Classification of Coupling

Stamp Coupling

Two modules are stamp coupled, if they communicate using a composite data
item such as a structure in C.

Control Coupling

Module A and B are said to be control coupled if they communicate by passing
of control information.

Common Coupling

Two modules are common coupled, if they share some global data items.

Content coupling

Content coupling exist between two modules, if their code is shared.eg. a

branch from one module into another module.

S/W Design Approaches

Two different approaches to software design are: Function-oriented design

and Object-oriented design

Function oriented design
Features of the function-oriented design approach are:

Top-down decomposition
In top-down decomposition, starting at a high-level view of the system, each
high-level function is successfully refined into more detailed functions.

Ex Consider a function create-new-library member which essentially creates

the record for a new member, assigns a unique membership number to him and
prints a bill towards his membership charge. This function may consists of the
following subfunctions:
e assign-membership-number
e create-member-record
e print-bill
Each of these sub functions may be split into more detailed sub functions
and so on.

Object Oriented Design

In the object-oriented design approach, the system is viewed as a collection of
objects. The system state is decentralized among the objects and each object
manages its own state information.

Objects have their own internal data which define their state. Similar objects
constitute a class. Each object is a member of some class. Classes may inherit
features from a super class. Conceptually, objects communicate by message

passing.

Structured Analysis Methodology
The aim of structured analysis activity is to transform a textual problem
description into a graphic model. Structured analysis is used to carry out the
top-down decomposition of the set of high-level functions depicted in the
problem description and to represent them graphically. During structured
design, all functions identified during structured analysis are mapped to a
module structure. Structure analysis technique is based on the following
principles:

v Top-down decomposition approach

v Divide and conquer principle. Each function is decomposed

independently

v" Graphical representation of the analysis results using Data Flow
Diagram (DFD).

Use of Data Flow Diagram

The DFD also known as bubble chart is a simple graphical formalism that can
be used to represent a system in terms of the input data to the system, various
processing carried out on these data & the output data generated by the system.
DFD is a very simple formalism — it is simple to understand and use. A DFD
model uses a very limited number of primitive symbols to represents the

functions performed by a system and the dataflow among these functions.

Lists the Symbols used in DFD
Five different types of primitive symbols used for constructing DFDs. The
meaning of each symbol is
Functional symbol (©) :A function is represented is using a circle.
External entity symbol ([]) : An external entities are essentially
those physical entities external to the software system which interact with the
system by inputting data to the system or by consuming the data produced by
the system.
Data flow symbol (—): A directed arc or an arrow is used as a data flow
symbol.
Data store symbol (—) : A data store represents a logical file. It is
represented using two parallel lines.
Output symbol ([__1) : The output symbol is used when a hard copy is
produced and the user of the copies cannot be clearly specified or there are

several users of the output.

Construction of DFD
A DFD model of a system graphically represent how each input data is
transformed to its corresponding output data through a hierarchy of DFDs.
A DFD start with the most abstract definition of the system (lowest level) and
at each higher level DFD, more details are successively introduced. The most
abstract representation of the problem is also called the context diagram.
Context Diagram
The context diagram represents the entire system as a single bubble. The bubble
Is labelled according to the main function of the system. The various external
entities with which the system interacts and the data flows occurring between
the system and the external entities are also represented. The data input to the
system and the data output from the system are represented as incoming and

outgoing arrows.

X : i
Z
Y
Fig. 4.6 Context Diagram

Level 1 DFD

The level 1 DFD usually contains between 3 and 7 bubbles. To develop the
Level 1 DFD, examine the high-level functional requirements. If there are
between 3 to 7 high-level functional requirements, then these can be directly
represented as bubbles in the Level 1 DFD. We can examine the input data to
these functions and the data output by these functions and represent them
appropriately in the diagram. If a system has more than seven high-level
requirements, then some of the related requirements have to be combined and

represented in the form of a bubble in the Level 1 DFD.

Decomposition

Each bubble in the DFD represents a function performed by the system. The
bubbles are decomposed into sub functions at the successive level of the DFD.
Each bubble at any level of DFD is usually decomposed between three to seven
bubbles. Decomposition of a bubble should be carried out on until a level is

reached at

Example: Student admission and examination system
This statement has three modules, namely

e Registration module

e Examination module

e Result generation module

Registration module:
An application must be registered, for which the applicant should pay the
required registration fee. This fee can be paid through demand draft or cheque
drawn from a nationalized bank. After successful registration an enrolment
number is allotted to each student, which makes the student eligible to appear in
the examination.

Examination module:

a) Assignments : Each subject has an associated assignment, which is
compulsory and should be submitted by the student before a specified
date.

b) Theory Papers : The theory papers can be core or elective. Core papers
are compulsory papers, while in elective papers students have a choice to
select.

C) Practical papers: The practical papers are compulsory and every
semester has practical papers.
Result generation Module:

The result is declared on the University’s website. This website contains

mark sheets of the students who have appeared in the examination of the said
semester.

Data Flow Diagram

Registration

Student
Admission and
Examination

System

Examination

Student \

\

Result Generation

Fig. 4.7 Level 0 DFD or Context Diagram

Level 1 DFD
1
il Registration
. Application Enrolment No. Alloted

Student Detail for

Registration

y 3
Examination /4

Student System
Enter View Report
Enrolment
No. and
Semester

Enter Student v
Choice 4
4 Student Subject
Choice Choice Detail
Management
System
Student
Information
Entry
Administrator 5
¥ Student
Information
Management

Fig 4.8 Level 1 DFD of Student Admission and Examination System

Level 2 DFD

Registration Form

1.1
Administrator > Verification Student
of Payment yy

Enrolment No.
Demand Draft No. , Alloted

Cheque No.

Student Detail

1.2
Admission

A

Student Registered

Fig.4.9 Level 2 DFD of Registration

Enrolment No., Semester

Student User 1D, Password

/ Coordinator

2.1
Authenticated
User

4

User ID, Password

User Account Detail

Administrator

Fig. 410 Level 2 DFD of Authenticated

Mark Sheet

3.1 Semester Result
Marks
Information

Management

3.2
Result
Report

Generation

Student Detail

Marks Detail

Fig 4.11Level 2 DFD of Examination

Limitations of DFD

A data flow diagram does not show flow of control. It does not show
details linking inputs and outputs within a transformation. It only shows
all possible inputs and outputs for each transformation in the system.

The method of carrying out decomposition to arrive at the successive
level and the ultimate level to which decomposition is carried out are
highly subjective and depend on the choice and judgement of the analyst.
Many times it is not possible to say which DFD representation is superior
or preferable to another.

The data flow diagram does not provide any specific guidance as to how
exactly to decompose a given function into its subfunctions.

Size of the diagram depends on the complexity of the logic.

Structured Design

The aim of structured design is to transform the results of the structured analysis
that is a DFD representation into a structured chart. A structured chart
represents the software architecture i.e. The various modules making up the
system, the module dependency and the parameters that are passed among the
different modules. The structure chart representation can be easily implemented
using some programming language. Since the main focus in a structure chart
representation is on module structure of a software and the interaction among
the different modules. The procedural aspects are not represented in a structured

design. The basic building blocks which are used to design structure charts are:

Rectangular boxes: A rectangular box represent module
Module invocation arrows

An arrow connecting two modules implies that during program execution,
control is passed from one module to the other in the direction of the connecting
arrow.

Data flow arrows

These are small arrows appearing alongside the module invocation arrows. The
data flow arrows are annotated with the corresponding data name. The data flow
arrows represents the fact that the named data passes from one module to the
other in the direction of the arrow.

Flow Chart vs Structure Chart

A flow chart is a convenient technique to represent the flow of control in a

program. A structure chart differs from a flow chart in three principal ways:

« It is usually difficult to identify different modules of the software from its
flow chart representation.

« Data interchange among different modules is not represented in a flow chart.
Sequential ordering of tasks inherent in a flow chart is suppressed in a
structure chart.

Principles of transformation of DFD to structure chart

Structure design provides two strategies to guide transformation of a DFD into a
structure chart:

Transform analysis

Transaction analysis

Normally, one starts with the level 1 DFD, transforms in into module
representation using either the transform or the transaction analysis and then
proceeds towards the lower-level DFDs. At each level of transformation, first
determine whether the transform or the transaction analysis is applicable to a
particular DFD.

Transform Analysis

Transform analysis identifies the primary functional components (modules) and
the high level input and outputs for these components. The first step in
transform analysis is to divide the DFD into three types of parts:

= Input

= Logical processing

= Qutput
The input portion in the DFD includes processes that transform input data from
physical to logical form. Each input portion is called an afferent branch. The
output portion of a DFD transforms output data from logical form to physical
form. Each output portion is called an efferent branch. The remaining portion of

a DFD is called central transform.

In the next step of transform analysis, the structure chart is derived by drawing
one functional component for the central transform and the afferent and efferent
branches.

Identifying the highest level input and output transforms require experience and
skill. The first level of structure chart is produced by representing each input
and output unit as boxes and each central transforms a single box.

In the third step of transform analysis, the structure chart is refined by adding
subfunctions required by each of the high-level functional components. Many
levels of functional components may be added. This process of breaking
functional components into subcomponents is called factoring. Factoring
includes adding read and write modules, error-handling modules, initialization
and termination process etc. The factoring process is continued until all bubbles
in the DFD are represented in the structure chart.

Transaction Analysis

A transaction allows the user to perform some meaningful piece of work. In a
transaction-driven system, one of several possible paths through the DFD is
traversed depending upon the input data item. Each different way in which input
data is handled in a transaction. The number of bubbles on which the input data
to the DFD are incident defines the number of transactions. Some transactions

may not require any input data.

For each identified transaction, we trace the input data to the output. In the
structure chart, we draw a root module and below this module we draw each

identified transaction of a module.

Chapter-5
User Interface Design

Contain
Characteristics of Good Interface

Basic concepts of UID
Types of User interfaces
Components based GUI development

Rules for UID (User Interface Design)

User interface design creates an effective communication medium between a
human and a computer. User interface design begins with the identification of
user, task, and environment requirements. Once user tasks have been identified,
user scenarios are created and analyzed to define a set of interface objects and

actions.

Three Golden rules of user interface design are:
e Place the user in control.
e Reduce the user’s memory load.
e Make the interface consistent.

Place the user in control
Number of design principles that allow the user to maintain the control are:
= Define interaction modes in a way that does not force a user into
unnecessary or undesired actions.
= Provide for flexible interaction, different users have different
Interaction preferences.

= Allow user interaction to be interruptible.

= Streamline interaction as skill levels advance and allow the interaction to
be customized.
= Hide technical internals from the casual user.
= Design for different interaction with objects that appear on the screen.
Reduce the User’s Memory Load
Principles that enable an interface to reduce the user’s memory load are:
» Reduce demand on short-term memory.
= Establish meaningful defaults.
= Define shortcuts that are intuitive.

= Disclose information in a progressive fashion.

Make the Interface Consistent
The interface should present and acquire information in a consistent fashion.
The set of design principles that help make the interface consistent are:

= Allow the user to put the current task into a meaningful context.

= Maintain consistency across a family of applications.

Interface Design Models
The process for designing a user interface begins with the creation of different
models of system function. Four different user interface design models are:

% User model

¢+ Design model
% Mental model

s Implementation model
A software engineer establishes a user model, the software engineer creates a
design model, the end-user develops a mental image that is often called the
user’s model or the system perception, and the implementation of the system

create a system image.

A design model of the entire system incorporates data, architectural, interface,
and procedural representations of the software.
The user model establishes the profile of end-users of the system. The system

perception is the image of the system that end-users carry in their heads.

The User Interface Design Process

The design process for user interfaces is iterative and can be represented using a
spiral model. The user interface design process encompasses four distinct
activities

e User, task, and environment analysis and modelling

e Interface design

¢ Interface construction

e Interface validation
The initial analysis activity focuses on the profile of the users who will interact
with the system. Skill level and business understanding are recorded and
different user categories are defined. The software engineer attempts to
understand the system perception for each class of users.
Once general requirements have been defined, a more detailed task analysis is
conducted. Those tasks that the user performs to accomplish the goals of the
system are identified, described and elaborated.
The goal of interface design is to define a set of interface objects and actions
that enable a user to perform all defined tasks that meets every usability goal

defined for the system.

Interface Design Activities, Defining Interface Objects and

Actions and the Design Issues

Interface Design Activities

Once task analysis has been completed, all tasks required by the end-user have
been identified and the interface design activity commences. Interface design
steps can be accomplished using the following approach:

Establish the goals and intentions for each task.

Map each goal and intention to a sequence of specific actions.

Specify the action sequence of tasks and subtasks.

Indicate the state of the system.
Define control mechanisms, that is the objects and actions available to the

O O O O O

user to alter the system state.

Show how control mechanisms affect the state of the system.
o Indicate how the user interprets the state of the system from
information provided through the interface.

©)

Defining Interface Objects and Actions
Once the objects and actions have been defined and elaborated. Interface objects
are categorized into types: source, target, and application:
= A source object (e.g. a report icon) is dragged and dropped onto a target
object (e.g. a printer icon) such as to create a hard copy of the report.
= An application object represents application-specific data that are not
directly manipulated as part of screen interaction such as a list.
After identifying objects and their actions, an interface designer performs screen
layout which involves:

= Graphical design and placement of icons

= Definition of descriptive screen text
= Specification and titling for windows

= Definition of major and minor menu items

Design Issues
Four common design issues are:

= System response time

= User help facilities

= Error information handling and

= Command labelling
System response time is the primary complaint for many interactive
applications. System response time is measured from the point at which the user
performs some control action until the software responds with desired output or
action. Two important characteristics of system response time are length and
variability.
Two different types of help facilities are integrated and add-on. An integrated
help facility is designed into the software from the beginning. An add-on help
facility is added to the software after the system has been built. User help
facilities must be addressed: when it is available, how it is accessed, how it is
represented to the user, how it is structured, what happens when help is exited.
An effective error message can do much to improve the quality of an interactive
system and will significantly reduce user frustration when problems do occur.
Every error message or warning produced by an interactive system should have
the following characteristics:

» The message should describe the problem in simple language that a user
can easily understand.
» The message should provide constructive advice for recovering from the

error.

» The message should indicate any negative consequences of the error.
» The message should be accompanied by an audible or visual cue such as

a beep, momentary flashing, or a special error colour.

Compare the Various Types of Interface

User interfaces broadly classified into three categories:
% Command language-based interfaces
% Menu-based interfaces

++ Direct manipulation interfaces

Command Language-Based Interfaces

A command language-based interface is based on designing a command
language which the user can use to issue the commands. The user is expected to
frame the appropriate commands in the language and type whenever required.
Command language-based interface allow fast interaction with the computer
and simplify the input of complex commands.

Obviously, for inexperienced users, command language-based interfaces are not
suitable. A command language-based interface is easier to develop compared to
a menu-based or a direct-manipulation interface because complier writing
techniques are well developed. One can systematically develop a command

language interface by using the standard complier writing tools: Lex and Yacc.

Usually, command language-based interfaces are difficult to learn, and require
the user to memorize the set of primitive commands. Most users make errors
while formulating commands in the command language and also while typing

them in. In a command language-based interface, all

interactions with the system is through a keyboard and cannot take advantage of
mouse. For inexperienced users, command language-based interface are not
suitable.
Issues in Designing a Command Language Interface
» The designer has to decide what mnemonics to use for the different
commands. The designer should try to develop meaningful
mnemonics and yet be concise to minimize the amount of typing
required.
» The designer has to decide whether the user will be allowed to
redefine the command names to suit their own preferences.
= The designer has to decide whether it should be possible to compose
primitive commands to form more complex commands. A
sophisticated command composition facility would require the syntax
and semantics of the various command composition options to be
clearly and unambiguously specified. The ability to combine
commands can be usefully exploited by experienced users, but is
quite unnecessary for inexperienced users.

Menu-based interfaces

The advantage of a menu-based interface over a command language-based
interface is that menu-based interface does not require the users to remember
the exact syntax of the commands. A menu based interface is based on
recognition of the command names. In this type of interface the typing effort is
minimal as most interactions are carried out through menu selections using a
pointing device.

Experienced users find a menu-based user interface to be slower than a
command language-based interface because they can type fast and get speed
advantage by composing different primitive commands to express complex

commands. Composing commands in a menu-based interface is not possible.

A major challenge in the design of a menu-based interface is that of structuring
the large number of menu choices into manageable forms.

The techniques available to structure of menu items are:

Scrolling Menu

When a full choice list cannot be displayed within the menu area, scrolling of
the menu items is required. This enables the user to view and select the menu

items that cannot be accommodated on the screen.

Scrolling menu

Fig.5.1 Font size selecting using scrolling menu

Walking Menu

Walking menu is a very commonly used menu to structure a large collection of
menu items. In this technique, when a menu item is selected, it causes further
menu items to be displayed adjacent to it in a sub-menu. A walking menu can
be successfully used to structure commands only if there are limited choices
since each adjacently displayed menu does take up screen space and the total

screen area, after all, is limited.

~—i2)

Fig.5.2 Examples of walking menu

Hierarchical Menu:

In this technique, the menu items are organized in a hierarchy or tree structure.
Selecting a menu item causes the current menu display to be replaced by an
appropriate sub-menu. Walking menu can be considered to be a form of
hierarchical menu. Hierarchical menu, on the other hand, can be used to manage
a large number of choices, but the users are likely to face navigational problems
and therefore lose track of their whereabouts in the menu tree. This probably is
the main reason why this type of interface is very rarely used.

Direct Manipulation Interfaces

Direct manipulation interfaces present the interface to the user in the form of
visual models i.e. icons. This type of interface is called as iconic interface. In
this type of interface, the user issues commands by performing actions on the
visual representations of the objects.

The advantages of iconic interfaces are that the icons can be recognised by the

users very easily and icons are language-independent.

Main aspects of Graphical Ul, Text based Interface

Aspects of GUI

> In a GUI, multiple windows with different information can
simultaneously be displayed on the user screen.

» lIconic information representation and symbolic information manipulation
Is possible in a GUI. Symbolic information manipulation, such as
dragging an icon representing a file to a trash can for deleting, is
intuitively very appealing and the user can instantly remember it.

» A GUI usually supports command selection using an attractive and user-
friendly menu selection system.

» Ina GUI, a pointing device such as a mouse or a light pen can be used for
issuing commands. The use of a pointing device increases the efficacy of
the command issue procedure.

» A GUI flip side, a GUI requires special terminals with graphics
capabilities for running and also requires special input devices such as a

mouse.

Text Based Interface

Text based interface only use text, symbols and colours available on a given text
environment. Text- based user interface can be implemented on a cheap

alphanumeric display terminal.

Chapter -6
Software Coding & Testing

Content

Coding

Code Review

Code walk through

Code inspections and software Documentation
Testing

Unit testing

Black Box Testing

E(wivalence class partitioning and boundary value analysis
White Box Testing

Different White Box methodologies
statement coverage branch coverage
condition coverage

path coverage

cyclomatic complexity

data flow based testing

mutation testing

Debugging approaches

Debugging guidelines

Integration Testing

Phased and incremental integration testing
System testing alphas beta and acceptance testing

Performance Testing, Error seeding
General issues associated with testing

Coding Standards and Guidelines

Good software development organizations develop their own coding standards
and guidelines depending on what best suits their needs and types of products

they develop.
Representative coding standards are:

Rules for limiting the use of global: These rules list what types of data can be

declared global and what cannot.

Contents of the headers preceding codes for different modules: The
information contained in the headers of different modules should be standard for

an organization. The exact format in which the header information is

organized can also be specified. Some standard header data are:

a) Name of the module

b) Date on which the module was created

¢) Author's name

d) Modification history

e) Synopsis of the module

f) Different functions supported along with their input/output parameters

g) Global variables accessed / modified by the modules

Naming conventions for global variables, local variables and constants
identifiers: A possible naming conventions can be that global variable names
always start with a capital letter, local variable names are small letters, and
constant names are always capital letters.

Error return conventions and exception handling mechanisms: The way
error conditions are reported by different functions in a program and the way
common exception conditions are handled should be standard within an

organization.
Code Walk-Through

The main objective of code walk-through is to discover the algorithmic and
logical errors in the code. Code walkthrough is an informal code analysis
technique.

In this technique, after a module has been coded, it is successfully compiled and
all syntax errors are eliminated. Some members of the development team are
given the code a few days before the walk-through meeting to read and
understand the code. Each member selects some test cases and simulates
execution of the code through different statements and functions of the code.
Even though a code walkthrough is an informal analysis technique, several
guidelines have evolved for making this technique more effective and useful.

Some guidelines are:

® The team performing the code walkthrough should not be either too big or
too small. Ideally, it should consist of three to seven members.

e Discussions should focus on discovery of errors and not on how to fix the
discovered errors.

Code Inspection and Software Documentation”™ Code

Inspection

The principal aim of code inspection is to check for the presence of some
common types of errors caused due to oversight and improper programming.
Some classical programming errors which can be checked during code
inspection are:

v" Use of uninitialized variables

v" Jumps into loops

v Non-terminating loops

v" Array indicates out of bounds

v" Improper storage allocation and deallocation

v" Use of incorrect logical operators

v" Improper modification of loop variables

v Comparison of equality of floating point values.

Software Documentation’

Different kinds of documents such as user's manual, software requirements
specification (SRS) document, design document, test document, installation
manual are part of the software engineering process. Good documents are very

useful and serve the following purposes:

> Good documents enhance understandability and maintainability of a
software product. They reduce the effort and time required for maintenance.

> Good documents help the users in effectively exploiting the system.

> Good documents help in effectively overcoming the manpower turnover
problem. Even when an engineer leaves the organization, the newcomer can

build up the required knowledge quickly.

> Good documents help the manner in effectively tracking the progress of the
project.
Different types of software documents can be broadly classified into:

o Internal documentation
o External documentation
Internal Documentation
Internal documentation is the code comprehension features provided in the

source code itself. Internal documentation can be provided in the code in several
forms. The important types of internal documentation are:
% Comments embedded in the source code

% Use of meaningful variable names

L)

*

*» Module and function headers

‘0

D)

L)

Code structuring (i.e. Code decomposed into modules and functions)

*» Use of constant identifiers

%* Use of user-defined data types

External documentation

External documentation is provided through various types of supporting
documents such as wusers' manual, software requirements specification
document, design document, test document etc. A systematic software
development style ensures that all these documents are produced in an orderly
fashion.

An important feature of good documentations consistency with the code.
Inconsistencies in documents creates confusion in understanding the product.

Also, all the documents for a product should be up-to-date.

Distinguish among Unit Testing, Integration Testing, and
System Testing

A software product is normally tested in the three levels:

e Unit testing

¢ Integration testing

e Systemtesting
A unit test is a test written by the programmer to verify that a relatively small
piece of code is doing what it is intended to do. They are narrow in scope, they
should be easy to write and execute, and their effectiveness depends on what the
programmer considers to be useful. The tests are intended for the use of the

programmer. Unit tests shouldn't have dependencies on outside systems.

An integration test is done to demonstrate that different pieces of the system
work together. Integration tests cover whole applications, and they require much
more effort to put together. They usually require resources like database
instances and hardware to be allocated for them. The integration tests do a more
convincing job of demonstrating the system works (especially to non-
programmers) than a set of unit tests .

System tests test the entire system. It is set of test carried out by test engineer
against the software(system) developed by developer. In system testing the
complete system is configured in a controlled environment and test cases are
created to simulate the real time scenarios that occurs in a simulated real life test
environment. The purpose of system testing is to validate an application and
completeness in performing as designed and to test all functions of the system
that is required in real life. the most popular approach of system testing is Black

Box testing.

Unit Testing

Unit testing or module testing of different units or modules of a system in

isolation.

Fig. 6.1 Unit testing

Unit testing is undertaken when a module has been coded and successfully
reviewed. The purpose of testing is to find and remove the errors in the software
as practical. The numbers of reasons in support of unit testing are:
» The size of a single module is small enough that we can locate an error
fairly easily.
» Confusing interactions of multiple error is widely different parts of
the software are eliminated.
Driver and Stub Modules
In order to test a single module, we need a complete environment to provide all
that is necessary for execution of the module. We will need the following in
order to be able to test the module:

o The procedures belonging to other modules that the module under
test calls.

o Nonlocalb data structures that the module accesses.
o A procedure to call the function of the module under test with
appropriate parameters.

Stubs and drivers are design to provide the complete for a module.

Driver Module

l Global Data

Module under test }.‘

A 4

Stub Module

Fig. 6.2 Unit testing with the help of driver and stub module

A stub procedure is a dummy procedure that has the same I/O parameters as
given procedure but has a highly simplified behaviour. A driver module would
contain the no local data structure accessed by the module under test, and would
also have the code to call the different function of the module with appropriate

parameter values.
Methods of Black —Box Testing

In the black-box testing, test cases are design from an examination of the
input/output values only and no knowledge of design or code is required. Two
main approaches to design black-box test cases are:

« Equivalence class Partitioning

% Boundary value analysis

Equivalence class Partitioning and Boundary Value
Analysis

Equivalence Class Partitioning

In the equivalence class partitioning approach, the domain of input values to a
program is partitioned into a set of equivalence classes. The partitioning is done
such that the behavior of the program is similar to every input data belonging to
the same equivalence class. The main idea behind defining the equivalence
classes is that testing the code with any one value belonging to an equivalence
class is as good as testing the software with any other value belonging to that
equivalence class. Equivalence classes for a software can be designed by
examining both the input and output data. Guidelines for designing the
equivalence classes are:
i) If the input data values to a system can be specified by a range of values, then

one valid and two invalid equivalence classes should be defined.
i) If the input data assumes values from a set of discrete members of some
domain, then one equivalence classes for valid input values and another for
invalid input values should be defined.
Example — Suppose we have to develop a software that can calculate the square
root of an input integer . The value of the integer lies between 0 and 5000.
As the input domain of such software is 0 to 5000, so the equivalence class Of
the software will be 0 to 5000 .This equivalence class can be partitioned into
the following three equivalence classes

1. equivalence classes 1-The input integers whose value is less then

0.(invalid)
2. equivalence classes 2-The input integers whose value lies between and
5000.(valid)

3. equivalence classes 3- The input integers whose value is greater than
5000.(invalid).

So accordingly the following test cases are designed Test

casel=(-5,3000,7001), Test case2=(-20,100,5050), Test

case3=(-6,4000,9000)

Boundary Value Analysis

Boundary Value Analysis concentrates on the behavior of the system on its
boundaries of its input variables. The boundary of a variable includes the
maximum and the minimum valid value it is allowed attain in the system. It may
be an input or output or even some internal future or variable of the system that
captures some information of the system. Behavior of the system at its
boundaries is tested under boundary value analysis. Boundary value analysis-
based test suite design involves designing test cases using the values at the
boundary of different equivalence classes.

EX:-For the above software that calculates the square root of integer values in
the range between 0 and 5000 the test case can be designed as follows i.e.
{0,-1,5000,5001}

Summary of the Black-box test suite Design

e Examine the input and output values of the program.
¢ Identify the equivalence classes.

e Pick the test cases corresponding to equivalence class testing and

boundary value analysis.

Methodologies for White —Box Testing

White —Box testing is also known as transparent testing. It is a test case design

method that uses the control structure of the procedural design to

derive test cases. It the most widely utilized unit testing to determine all
possible path with in a module, to execute all looks and to test all logical
expressions. This form of testing concentrate on procedural detail.
The general outline of the white-box testing process is:
s Perform risk analysis to guide entire testing
process.
s Develop a detailed test plan that organizes the subsequence testing
process.
% Prepare the test environment for test execution.
% Execute test cases and communicate the results.

¢ Prepare a report

L)

Different white box methodologies: statement coverage branch
coverage, condition coverage, path coverage, data flow based
testing and mutation testing.

Statement Coverage

This statement coverage strategy aims to design test cases so that every
statement in a program is executed at least once. The principle idea governing
the statement coverage strategy is that unless a statement is executed there is no
way to determine whether an error exist in that statement unless a statement is
executed, we cannot observe whether it causes failure due to some illegal

memory access, wrong result computation etc.

Example:
Consider Euclid’s GCD computation algorithm:

Int compute_gcd(Xx,y)

Int Xx,y;
{
1 While (x!'=y){
2 If (x> y) then
3 X=X-V;
4 elsey=y-x;5 }
6 return Xx;
by
Design of test cases for the above program segment Test
casel Statement executed
X=5,y=5 1,5,6
Test case2 Statement executed
X=5,y=4 1,2,3,5,6
Test case3 Statement executed
x=4,y=5 1,2,4,5,6
so the test set of the above algorithm will be

{(x=5,y=5),(x=5,y=4),(x=4,y=5)}.

Branch Coverage

In the branch coverage-based testing strategy, test cases are designed to make
each branch condition assume true and false value in turn. Brach testing is also
known as edge testing, which is stronger than statement coverage testing

approach.

Example : As the above algorithm contains two control statements such as while
and if statement, so this algorithm has two number of branches. As each branch
contains a condition, therefore each branch should be tested by assigning true
value and false value respectively. So four number of test cases must be

designed to test the branches.

Test casel X=6,y=6
Test case2 X=6,y=7
Test case3 x=8,y=7
Test case4 X=7,y=8
so the test set of the above algorithm will be

{(x=6,y=6),(x=6,y=7),(x=8,y=7),(x=7,y=8)}.

Condition Coverage

In this structural testing, test cases are designed to make each component of a
composite conditional expression assumes both true and false values. For
example, in the conditional expression ((C1 AND C;) OR C3), the components
C1,C, andCs are each made to assume both true and false values. Condition
testing is a stronger testing strategy than branch testing and branch testing is a
stronger testing strategy than the statement coverage- based testing.

Path Coverage

The path coverage-based testing strategy requires designing test cases such that
all linearly independent paths is the program are executed at least once. A
linearly independent path can be defined in the terms of the control flow graph
(CFG) of a program.

Control Flow Graph (CFG)

A control flow graph describes the sequence in which the different instructions
of a program get executed. The flow graph is a directed graph in which nodes

are either entire statement or fragments of a statement and edges

represents flow of control. An edge from one node to another exists if the

execution of the statement representing the first node can result in the transfer

of control to the other node.
A flow graph can easily be generated from the code of any problem.

&
®)

Fig. 6.3 Control Flow Graph

int computer_ged(int x, int y) {

1 while(x!=y) {
2 iIf(x>y) then 3
X=X-Y;
4 Else y-y-x; 5
¥
6 Return X;

Path

A path through a program is a node and edge sequence from the starting node to
a terminal node of the control flow graph of a program.. A program can have
more than one terminal nodes when it contains multiple exit or return type of

statements.

McCabe’s Cyclomatic Complexity Metric
Cyclomatic complexity defines an upper bound on the number of independent
paths in a program.
Given a control flow graph G of a program. Each node of the graph represents a
command or a statement of the program and each edge represents the flow of
execution between statements or nodes. For a control flow graph with E number
of edges and N number of nodes, the cyclomatic complexity can be computed as
M=E-N+2P
Where P is the number of connected components in the graph.
Control flow graph of a sequential program is a single component graph.
Hence, for any sequential program
M=E-N+2

Example:

Fig. 6.4 Control Flow Graph

Number of Edges = E =7
Number of Nodes =N =6
The value of cyclomatic complexity is

V(G =E-N+2
=7-6+2
=3
Data Flow — Based Testing

The data flow — based testing method selects the test paths of a program
according to the location of the definitions and use of the different variables in a

program.

Consider a program P. For a statement numbered S of P, let
DEF (S) = {X | Statement S contains a definition of X}, and

USES (S) = {X| Statement S contains a use of X}

For the statement S: a = b+c ; DEF (S) ={ a}, USES(S) ={b,c}

The definition of variable X at statement S is said to be live at statement SI, If
there exist a path from statement S to statement SI which doesn’t contain any
definition of X.

Mutation Testing

In mutation testing, the software is first tested by using an initial test suite built
of from different white — box testing strategies. After the initial testing is
complete, mutation testing is taken up. The idea behind mutation testing is to
make a few arbitrary changes to a program at a time. Each time the program is
changed, it is called a mutated program and the change effected is called a
mutant. A mutated program is tested against the full test suite of the program. If
there exists at least one test case in the test suite for which a mutant gives an
incorrect result, then the mutant is said to be dead. If a mutant remains alive
even after all the test cases have been exhausted, the test data is enhanced to kill
the mutant.

A major disadvantage of the mutation — based testing approach is that it is
computationally very expensive since a large number of possible mutants can be
generated.

Since mutation testing generates large mutants and requires us to each mutant
with the full test suite. It is not suitable for manual testing.

Debugging

Once errors are identified, it is necessary to first locate the precise program

statements responsible for the errors and then to fix them.

Debugging Approaches

a. Buffer Force Method
This is the most common method of debugging, but is the least efficient
method. In this approach, the program is base with print statement to print the
intermediate values with the hope that some of the printed values will help to
identify the statement in error. This approach becomes more systematic with the
use of a symbolic debugger because the values of different variables can be
easily checked.
b. Backtracking
In this approach, beginning from the statement at which an error symptom is
observed, the source code is traced backwards until the error is discovered.
c. Cause Elimination Method
In this approach, a list of causes which could possibly have contributed to the
error symptom is developed and tests are conducted to eliminate each cause.
d. Program Slicing
This technique is similar to back tracking. However, the search space is reduced
by defining slices.
Debugging Guidelines
» Debugging is often carried out by programmers based on their ingenuity.
» Many a times, debugging requires a thorough understanding of the
program design.
» Debugging may sometimes even require full redesign of the system.
» One must be beware of the possibility that any one error correcting many

introduce new errors.

Need for Integration Testing

The objective of integration testing is to test the module interfaces in order to
ensure that there are no errors in the parameter passing, when one module
invokes another module. During integration testing different modules of a
system are integrated in a planned manner using an integration plan. The
integration plan specifies the steps and the order in which modules are
combined to realize the full system. After each integration step, the partially
integrated system is tested.

 Oo—>
=<

>

S e L

Fig.6.5 Integration Testing

Anyone or a mixture of the following approaches can be used to develop the test
plan:

Big — bang approach

Top — down approach

Bottom — up approach
Mixed approach

O O O O

o Big— bang approach
Big — Bang Approach
In this approach, all the modules of the system are simply put together and
tested. This technique is practicable only for small systems. The main problem
with this approach is that once an error is found during the integration testing, it
Is very difficult to localize the error as the error may potentially belong to any of
the modules being integrated. Debugging errors reported during big—bang

Integration testing are very expensive.

Top — Down Approach

Top — down integration proceeds down the invocation hierarchy, adding are
module at a time until an entire tree level is integrated and it elements the need
for drivers.

In this approach testing can start only after the top-level modules have been
coded and unit tested.

A disadvantage of the top- down integration testing approach is that in the
absence of lower —level routines , many times it may become difficult to
exercise the lower—level routines, many times it may become difficult to
exercise the top- level routines in the desired manner since the lower — level
routines perform several low level functions such 1/O.

Bottom — up Integration Testing

In bottom-up testing, each subsystem is tested separately and then the full
system is tested. A subsystem might consist of many modules which
communicated among each other through well— defined interfaces. The primary
purpose of testing each subsystem is to test the interface among various
modules making up the subsystem. Both control and data interfaces are tested.
Advantages of bottom — up integration testing is that several disjoint subsystems
can be tested simultaneously.

A disadvantage of bottom — up testing is the complexity occurs when the system

is made up of a large number of small subsystems.
Mixed Integration Testing
A mixed(also called sandwiched) integration testing follows a combination of

top — down and bottom — up testing approaches. In this approach testing can

start as and when modules become available.

System Testing: Alphas, Beta and Acceptance Testing

System tests are designed to validate a fully developed system to assure that it
meets its requirements. Three kinds of system testing are:

e Alpha testing

e Betatesting

e Acceptance testing
Alpha Testing
Alpha testing refers to the system testing carried out by the team within the
developing organization.
Beta testing
Beta testing is the system testing performed by a select group of friendly
customers.
Acceptance Testing
Acceptance testing is the system testing performed by the customer to
determine whether to accept or reject the delivery of the system.

The system test cases can be classified into_functionality and performance test

case. The functionality test are designed to check whether the software satisfies
the functional requirements as documented in the SRS document. The
performance tests test the conformance of to the system with the nonfunctional

requirements of the system.

Performance Testing

Performance testing is carried out to check whether the system meets the non

— functional requirements identified in the SRS document. The types of
performance testing to be carried out on a system depend on the different
nonfunctional requirements of the system document in the SRS document. All

performance tests can be considered as black — box tests.

Need for Stress Testing and Error Seeding

Stress Testing

Stress testing is also known as endurance testing. Stress testing evaluated
system performance when it is stressed for short periods of time. Stress tests are
black — box tests which are designed to impose a range of abnormal and even
illegal input conditions so as to stress the capabilities of the software. Input data
volumes, input data rate, processing time, utilization of memory are tested
beyond the designed capacity.

Stress testing is especially important for systems that usually operate below the
maximum capacity but are severely stressed at some peak demand hours.
Example : If the nonfunctional requirement specification states that the
response time should not be more than 20 seconds per transaction when 60
concurrent users are working, then during the stress testing the response time is

checked with 60 users working simultaneously.

Volume Testing

Volume testing checks whether the data structures (buffers, arrays, queues,
stacks etc.) have been designed to successfully handle extraordinary situations.
Example : A compiler might be tested to check whether the symbol table
overflows when a very large program is compiled.

Configuration Testing

Configuration testing is used to test system behavior in various hardware and

software configuration specified in the requirements.

Compatibility Testing

This type of testing is required when the system interfaces with external

systems such as databases, servers etc. Compatibility aims to check

whether the interface functions perform as required. For instance, if the
system needs to communicate with a large database system to retrieve
information, compatibility testing is required to test the speed and accuracy
of data retrieval.
Regression Testing
Regression testing is performed in the maintenance or development phase. This
type of testing is required when the system being tested is an upgradation of an
already existing system to fix some bugs or enhance functionality, performance
etc.
Recovery Testing
Recovery testing tests the response of the system to the presence of faults or loss
of power, devices, services data etc. For example, the printer can be
disconnected to check if the system hangs.
Maintenance Testing
Maintenance testing addresses the diagnostic programs and other procedures that
are required to be developed to help implement the maintenance of the system.
Documentation Testing
Documentation is checked to ensure that the required user manual, maintenance
manuals and technical manuals exist and are consistent.
Usability Testing
Usability testing pertains to checking the user interface to see if it meets all the
user requirements. During usability testing, the display screens, messages, report
formats and other aspects relating to the user interface requirements are tested.
Error Seeding
Error seed can be used to estimate the number of residual errors in a system.
Error seeding seeds the code with some known errors. The number of seeded

error detected in the course of standard testing procedure is determined.

These values in-conjunction with the number of unseeded errors can be used to
predict:

i) The number of errors remaining in the product

ii) The effectiveness of the testing method

Let n be the total number of errors in the system and let “n” number of these
errors are detected during testing.

Let “S” be the total number of seeded errors and let “s” be the number of these
errors are detected during testing.

n/N=s/S

=>N=S*n/s

=>(N-n) =n(S-s) /S

General Issues Associated with Testing

Some general issues associated with testing

i) Test documentation

ii) Regression testing
Test Documentation
A piece of documentation which is generated towards the end of testing is the
test summary report. The report normally covers each subsystem and
represents a summary of tests which have been applied to the subsystem. It
will specify how many tests have been applied to a subsystem. It will specify
how many tests have been successful, how many have been unsuccessful, and
the degree to which they have been unsuccessful.
Regression Testing
Regression testing does not belong to either unit testing, integration testing or
system testing. Regression testing is the practice of running an old test suite
after each change to the system or after each bug fix to ensure that no new

bug has been introduced as a result of this change made or bug fixed.

Chapter-7
Software Reliability

Content

Software Reliability
Different reliability metrics
Reliability growth modeling
Software quality

Software Quality Management System
Importance of Software Reliability

Reliability of a software product can be defined as the probability of the product
working correctly over a given period of time. A software product
having a large number of defects is unreliable. Reliability of a system improves
it the number of defects in it is reduced. The reliability of a product depends on
the both the number of errors and the exact location of the errors. Reliability
also depends upon how the product is used (i.e. on its execution profile).
Different users use a software product in different ways. So defects which show
up for one user may not show up for another user.
Software Reliability and Hardware Reliability
Reliability behavior for hardware and software is very different. Hardware
failures are due to component wear and tear. If hardware failure occurs one has
to either replace or repair the failed part. A software product would continue to
fail until the error is tracked down and either the design or the code is changed.
For this reason, when level that existed before the failure accrued, whereas

when a software failure is repaired, the reliability nay either increase or
decrease.

There are three phases in the life of any hardware component i.e. burn in, useful
life and wear out.

In burn in phase, failure rate is quite high initially as it starts decreasing as the
faulty components are identified and removed. The system then enters its useful
life.

During useful life period, failure rate is approximately constant. Failure rate
Increases in wear- out phase due to warning out components. The best period is
useful life period. The shape of this curve a “both- tub” and it is also known as
both tub curve.

For software the failure rate is highest during integration and testing phases.
During the testing phase more and more errors are identified and moved
resulting in a reduced failure rate. This errors removal continues at a slower
speed during the useful life of the product. As the software becomes absolute,

no more error correction occurs and the failure rate remains unchanged.

Distinguish between the Different Reliability Metrics

The reliability requirements for different categories of software products may be
different for this reason, it is necessary that the level of reliability required for a
software product should be specialized in the SRS document. Some reliability
metrics which can be used to quantity the reliability of software products are:
» Rate of Occurrence of Failure (ROCOF)

ROCOF measures the frequency of occurrence of unexpected behaviour (i.e.
failures). The ROCOF measure of a software product can be obtained by
observing the behaviour of a software product in operation over a specified time

interval and then calculating the total number of failures during this interval.

> Probability of Failure ON Demand (POFOD)
POFOD measures the likelihood of the system failure when a service request is
made. For example a POFOD of 0.001 would mean that 1 out of every 1000
service requests would result in a failure.
> Availability
Availability of a system is a measure of how likely will the system be available
for use over a given period of time. This metric not only considers the number
of failures occurring during a time interval, but also takes into account the
repair time (downtime) of a system when a failure occurs. In order to
intimately, it is necessary to classify various types of failures.
Possible classifications of failures are:
Transient: Transient failures occur only for certain input values while
invoking a function of the system.
Permanent: Permanent failures occur for all input values while invoking a
function of the system.
Recoverable: When recoverable failures occur, the system recovers with or
without operator intervention.
Unrecoverable: In unrecoverable failures, the system may need to be
restarted.
Cosmetics: These classes of failures cause only minor irritations, and do
not lead to incorrect results.
Mean TIME TO Failure (MTTF)
MTTF is the average time between two successive failures, observed over a
large number of failures. To measure MTTF, we can record the failure data for
n failures.
Mean Time to Repair (MTTR)
Once failure occurs, some time is required to fix the error. MTTR measures
the average time it takes to track the errors causing the failure and then to fix

them.

Mean Time Between Failures (MTBF)
MTBF = MTTFH+MTTR

Thus, MTBF Of 300 hours indicates that once a failure occurs, the next failure
Is expected to occur only after 300 hours. In this case, the time measurements
are real time and not the execution times as in MTTF. Software Quality
The objective of software engineering is to produce good quality maintainable
software in time and within budget. That is a quality product does exactly what
the users want it to do. The modern view of quality associates a software
product with several factors such as:

Portability

A software product is said to be portable, if it can be easily made to work in
different operating system environments in different machines with other
software products etc.

Reusability

A software product has good reusability, if different modules of the product
can easily be reused to develop new product.

Correctness
A software product is correct, if different requirements as specified in the
SRS document have been correctly implemented,

Maintainability
A software product is maintainable, if errors can be easily corrected as and
when they show up , new functions can be easily added to the product and the

functionality of the product can be easily modified etc.
Reliability Growth Modeling

A reliability growth model is a mathematical model of how software
reliability improves as errors are detected and repaired. A reliability

growth model can be used to predict when a particular

level of reliability is likely to be attained. Thus, reliability growth
modeling can be used to determine when to stop testing to attain a
given reliability level. Two very simple reliability growth models are :
Jelinski and Moranda Model

The simplest reliability growth model is a step function model where
it is assumed that the reliability increases by a constant increment
each time an error is detected and repaired. However this simple
model of reliability which implicitly assumes that all errors contribute

equally to reliability growth, is highly unrealistic.

ROCOF

v

Time

Fig.7.1 Step function model of reliability growth

Littlewood and Verall's Model

This model allows for negative reliability growth to reflect the fact that when a
repair is carried out, it may introduce additional errors. It also models the fact
that as errors are repaired, the average improvement in reliability per repair
decreases. It treats an error's contribution to reliability improvement to be

an independent random variable having gamma distribution. This

distribution models the fact that error corrections with large contributions to
reliability growth are removed first. This represents diminishing return as test

continues.

Characteristics of Quality Software

The objective of software engineering is to produce good quality
maintainable software in time and within budget. That is, a quality product does
exactly what the users want it to do. The modern view of quality associates a
software product with several quality factors such as : Portability: A software
product is said to be portable, if it can be easily made to work in different
operating system environments, in different machines, with other software
products etc.

Usability: A software product has good usability, if different categories of
users can easily invoke the functions of the product.

Reusability: A software product has good reusability, if different modules of
the product can easily to develop new products.

Correctness: A software product is correct, if different requirements as
specified in the SRS document have been correctly implemented.
Maintainability: A software product is maintainability, if errors can be easily
corrected as and when they show up, new functions can be easily added to the
product, and the functionalities of the product can easily modified, etc.

Evolution of Software Quality Management System
Software Quality Management System

Issues associated with a quality system are:
. Management structural and individual responsibilities
A quality system is actually the responsibility of the organization as a whole.

However, many organization have a separate quality department to perform
several quality system activities. The quality system of an organization should

have the support of the top management

e Quality system activities

= Auditing of the projects

= Review of the quality system

= Development of standards, procedures and guidelines etc.

= Production of reports for the top management summarizing
the effectiveness of the quality system in the organization.

A good guality system must be well documented.

Evolution of Quality Systems

Quality system have rapidly evolved over the last 5 decades. The quality

systems of organisation have undergone through 4-stages of evolution as :

Quality Assurance Method Quality Paradigm

Inspection Product assurance

Quality Control(QC)

Quality Assurance
Process Assurance

Tota* Quality

Management(TQM)

Fig. 7.2Evolution of quality system and the corresponding shift in the
quality paradigm.

e Quality control focuses not only on detecting the defective product &

eliminating them. But also on determining the causes behind the defects.

e The quality control aims at correcting the causes of errors & not just rejecting
the defective products.
The basic premises of modern quality assurance is that if an organizations
processes are good and are followed rigorously then the products are bound
to be of good quality.
The modern quality paradigm includes some guidance for recognising,
defining, analysing & improving the production process.
Total quality management (TQM) says that the process followed by an

organisation must be continuously improve through process measurement.

Importance, Requirement and Procedure to Gain 1SO 9000
Certification for Software Industry

ISO (International Standards Organization) is a consortium of 63 countries
established to formulate and foster standardisation. 1SO published its 9000
series of standards in 1987.

The 1SO 9000 standard specifies the guidelines for maintaining a quality
system. 1SO 9000 specifies a set of guidelines for repeatable and high
quality product development.

ISO 9000 is a series of three standards: ISO 9001, ISO 9002, and 1SO
9003.

ISO 9001: This standard applies to the organisations engaged in design,
development, production, and servicing of goods. This standard is
applicable to most software development organisations.

ISO 9002: This standard applies to those organisations which do not
design products but are only involved in production. Examples include
steel and car \ manufacturing industries.

ISO 9003: This standard applies to organisations involved only in

installation and testing of the products.

Requirement of 1SO 9000 Certification

% Confidence of customers in an organisation increases when the
organisation qualifies for ISO 9001 certification.

+ 1SO 9000 requires a well-documented software production process.

+ 1SO 9000 makes the development process focused, efficient, and cost-
effective.

s I1SO 9000 certification points out the weak points of an organization
and recommends remedial action.

% 1SO 9000 sets the basic framework for the development of an optimal

process.

Procedure to gain 1SO 9000 Certification

An organisation intending to obtain 1SO 9000 certification applies to a 1SO

9000 registrar for registration. The 1SO 9000 registration process consists of

the following stages:

Application: Once an organisation decides to go for ISO 9000
certification, it applies to a register for registration.

Pre-assessment: During this stage, the registrar makes a rough assessment
of the organisation.

Document Review and Adequacy of Audit : During this stage, the
registrar reviews the documents submitted by the organisation and makes
suggestions for possible improvements.

Compliance audit: During this stage, the registrar checks whether the
suggestions made by it during review have been complied with by the
organisation or not.

Continued Surveillance: The registrar continues to monitorthe

organisation, though periodically.

SEI Capability Maturity Model (SEI CMM)

SEI Capability Maturity Model was proposed by Software Engineering Institute
of the Carnegie Mellon University, USA. SEI CMM classifies software
development industries into the following five maturity levels. The different
levels of SEI CMM have been designed so that it is easy for an organization to
slowly build its quality system beginning from scratch.

Level 1: Initial. A software development organization at this level is
characterized by ad hoc activity. Very few or no processes are defined and
followed. Since software production processes are not defined, different
engineers follow their own process and as a result the development efforts
become chaotic. It is called chaotic level.

Level 2: Repeatable. At this level, the basic project management practices such
as tracking cost and schedule are established. Size and cost estimation
techniques like function point analysis, COCOMO etc. are used.

Level 3: Defined. At this level, the processes for both management and
development activities are defined and documented. There is a common
organization-wide understanding of activities, roles and responsibilities. The
processes though defined, the process and the product qualities are not
measured. 1SO 9000 aims at achieving this level.

Level 4: Managed: At this level, the focus is on software metrics. Two types
of metrics are collected. Product metrics measure the characteristics of the
product being developed, such as its size, reliability, time complexity,
understandability etc. Process metric reflect the effectiveness of the process
being used, such as the average defect correction time, productivity, the average
number of defects found per hour of inspection, the average number of failures
detected during testing per LOC, and so forth

Level:5 Optimizing: At this stage, the process and the product metrics are collected.

Process and Product measurement data are analyzed for continuous process

improvement.

Compare between ISO 9000 Certification and SEI/CMM

¢ ISO 9000 is awarded by an international standards body. ISO 9000
certification can be quoted by an organization in official documents.
However, SEI CMM assessment is purely for internal use.

¢ SEI CMM was specifically developed for software industry alone.

¢ SEI CMM goes beyond quality assurance and prepares on organization to
ultimately achieve TQM. ISO 9000 aims at level 3 of SEI/CMM model

Model Question for Software Engineering

Model Question carrying 2 marks each.

1. What is a prototype?

2. What is project risk?

3. Define software reliability.

4. Differentiiate between verification and validation .

5. What do mean by debugging?

6. Distinguish between alpha and beta testing
7.What is Direct Manipulating Interface?
8.What do you mean by SRS ?

9. What is software reliability?

10. What is a structure chart?

11. What do you mean by CASE?

12. What is project planning?

13. What is staffing?

14. what is scheduling?

15. What is DFD?

16. Why should we use a life cycle model?
17Define object oriented concept.

18.Write down the structured analysis methodology.
19. Define coding standards and guidelines.

20. What is GUI?

21.What is function point metric?

22. Which software producted is treated as organic type?
23. Which software product is treated as embedded type?
24.What do you mean by coupling.

25. What is software engineering.

Model Question carrying 6 marks each

1. What is software reliability? Discuss the three software reliability metrics.

2. Describe how to get 9000 certification.

3.Explain Transform Analysis and Transaction Analysis.

4.What are the characteristics of good SRS document?

5.Discuss the project estimation technique.

6.Explain the main aspects of GUI.

7. Write down the rules for UID.

8.What is CASE tool? What are the benefits of CASE?

9. Differentiate between object oriented and function oriented software design?
10. Distinguish between cohesion and coupling. Classify cohesiveness.
11. Explain the features of spiral model.

12. Write down the effect of schedule change on cost. 13.Write

down the work Breakdown Structure of scheduling. 14.Explain

Activity networks of Scheduling.

15. Write down the concept of Gantt Chart & PERT Chart on scheduling.
16. Explain the software design approaches.

17. What is DFD? Write down the list of symbols used in DFD.

18. Explain code inspections.

19. Explain software documentation.

20. Explain debugging approaches & guidelines.

21. Explain the need for stress testing.

22. Explain error seeding of software testing. 23.Write

down the importance of software reliability. 24.Explain

reliability growth modelling

25. Write down the characteristics of quality software. Write down the
evolution of software quality management system.

26.Briefly explain the building blocks for CASE.

27.Write down the limitations of DFD.

28. Explain code inspections methodology.

29. Explain software documentation.

30. Define system testing and explain various types of system testing
approaches.

Model Question carrying 8 marks each.

1. What is cohesion and coupling? Explain the different types of cohesion and
coupling.

2. Discuss the prototype model of software development.

3. Discuss about SEI Capability Maturity Model.

4. Explain UID Processs and models.

5. Explain interface design activities, defining interface objects, actions and the
design issues.

6. Compare the various types of interface.

7.What is COCOMO model of estimation? Discuss the features of different
COCOMO models.

8. What is cyclomatic complexity? Why it is used? Explain how cyclomatic
complexity is computed? Give an illustration for this.

9. Explain the project estimation technique.

10. Explain the different phases of classical waterfall model.

11. Explain the different methods of white box testing techniques.

12. What is integration testing? Explain the different methods of integration
testing.

13. Explain the steps of prototyping model with a diagram.

14. Write down the different steps of spiral model and explain.

15. Write down the responsibilities of a software project manager in software
Engineering.

16. Explain organization structure with diagram.

17. Explain team structure with diagram.

18. Explain the classification of coupling.

19. Explain O level, 1 level, 2 level DFD with an example.

20. Write down the uses of structure chart & structured design.

21. Explain the principles of transformation of DFD to a structure chart.

22. Explain the different types user Interface so that the user can easily interact
with the software.

23. Differentiate between object oriented and function oriented design
approaches.

24. Explain different Black Box testing approaches used for software testing.
25. Explain the different metrics used for software size estimation.

26. Write short notes on:
a. Spiral model
b. FP based metric
c. Jensen model for stating level estimation,
d. project management.
e. Black box testing
f. Risk management

*xxxGOOD LUCK****

	STUDY MATERIAL
	(For 5th Semester CSE)
	Course Contents
	1. Introduction to Software Engineering 5-27
	2. Software Project Management 28-60
	3. Requirement Analysis and specification 61-71
	4. Software Design 72-91
	5. User Interface Design 92-103
	6. Software Coding & Testing 104-123
	7. Software Reliability 124-134
	BOOKS Recommended:-
	Contents
	Relevance of Software Engineering
	Software Characteristics and Applications
	Software Applications

	Emergence of Software Engineering
	Early Computer Programming, High Level Language Programming, Control Flow Based Design, Data Flow Oriented Design, Data Structure Oriented Design, Object and Component Bases Design
	Early Computer Programming
	High-Level Language Programming
	Control Flow-Based Design
	Data Structure-Oriented Design
	Object-Oriented Design

	Software Life Cycle Models
	Classical Waterfall Model and Iterative Waterfall Model
	Feasibility Study
	Technical Feasibility
	Economic Feasibility
	Operational Feasibility
	Requirement Analysis and Specifications
	Requirements Gathering and Analysis
	Requirements Specification
	Design
	Traditional Design Approach
	Object-Oriented Design Approach
	Coding and Unit Testing
	Integration and System Testing
	Maintenance
	 Corrective Maintenance
	 Perfective Maintenance
	 Adaptive Maintenance
	Iterative Waterfall Model

	Prototyping Model
	Evolutionary Model
	Spiral Model
	Spiral Model Strengths
	Spiral Model Weaknesses

	Chapter - 2 Understanding Project Management
	Software Project Management
	Project Management Concepts
	Project Management
	Job Responsibilities of a Software Project Manager
	Skills Necessary for Software Project Management
	Project Planning
	Sliding Window Technique

	Project Size Estimation Metrics, Line Of Control (LOC) and Function Point Metric (FP)
	Lines Of Code (LOC)
	Function Point Metric
	Objectives of Function Point Counting
	Steps of Function Point Counting
	 Number Of Inputs:
	 Number Of Outputs:
	 Number Of Inquiries:
	 Number Of Files:
	 Number Of Interfaces:

	Feature Point Metric
	Project Estimation Techniques
	Empirical Estimation Techniques
	Heuristic Techniques
	Analytical Estimation Techniques
	Halstead’s Software Science an Analytical Estimation Techniques
	Operators and Operands for the ANSI C Language
	Length and Vocabulary
	Program Volume
	Effort and Time
	Actual Length Estimation
	Empirical Estimation Techniques (1)
	 Expert Judgment Technique
	 Delphi Cost Estimation

	COCOMO: A Heuristic Estimation Technique
	Basic COCOMO
	Intermediate COCOMO
	Product
	Computer
	Personnel
	Development Environment
	Complete COCOMO / Detailed COCOMO

	Effect of Schedule Change on Cost
	Jensen Model for Staffing Level Estimation
	Tools for Scheduling
	Use of Work Breakdown Structure, Activity Networks, Gantt Chart and PERT in Scheduling
	Work Breakdown Structure
	Activity Networks and Critical Path Method
	 Critical Path Method
	Gantt Chart
	PERT (Project Evaluation and Review Technique) Charts

	Organisation Structure
	Team Structure
	Chief Programmer Team
	Democratic Team
	Mixed Control Team Organization

	Importance of Risk Identification, Risk Assessment and Risk Containment with reference to Risk Management
	Risk Identification
	Risks Assessment
	Risk Containment
	Avoid the Risk
	Transfer the Risk
	Risk Reduction

	Requirement Analysis and specification
	Contents
	Need for Requirement Analysis
	Steps in Requirements Elicitation for Software: Initiating the Process, Facilitated Application Specification Techniques, Quality Function Deployment
	Initiating the Process
	Facilitated Application Specification Techniques
	Quality Function Deployment (QFD)

	Principles of Analysis
	Software Prototyping
	Prototyping Approach
	Prototyping Tools and Methods
	Software Requirement Specification Principle

	SRS Document
	Software Requirement Specification
	Contents of the SRS Document

	Characteristics and Organization of SRS Document
	Characteristics of SRS document
	Organization of the SRS Document
	Contents

	Chapter-4
	Software Design
	Importance of Software Design
	Design Principles and Concepts
	Design Principles
	Design Concepts
	Preliminary Design / High-Level Design
	Detailed Design
	What is a Good Software Design
	Modularity
	Clean Decomposition
	Layered Design

	Cohesion and Coupling
	Cohesion
	Error isolation
	Scope for Reuse
	Understandability

	Classification of Cohesiveness
	Coincidental Cohesion
	Logical Cohesion
	Temporal Cohesion
	Procedural Cohesion
	Communication Cohesion
	Sequential Cohesion
	Functional Cohesion

	Classification of Coupling
	Data Coupling
	Stamp Coupling
	Control Coupling
	Common Coupling
	Content coupling

	S/W Design Approaches
	Function oriented design
	Top-down decomposition
	Object Oriented Design

	Structured Analysis Methodology
	Use of Data Flow Diagram
	Lists the Symbols used in DFD
	Construction of DFD
	Context Diagram
	Level 1 DFD
	Decomposition

	Limitations of DFD
	Structured Design
	Module invocation arrows
	Data flow arrows
	Flow Chart vs Structure Chart
	Principles of transformation of DFD to structure chart
	Transform Analysis
	Transaction Analysis

	Chapter-5
	User Interface Design
	Contain

	Rules for UID (User Interface Design)
	Place the user in control
	Reduce the User’s Memory Load
	Make the Interface Consistent

	Interface Design Models
	The User Interface Design Process

	Interface Design Activities, Defining Interface Objects and Actions and the Design Issues
	Interface Design Activities
	Defining Interface Objects and Actions
	Design Issues
	Compare the Various Types of Interface
	Command Language-Based Interfaces
	Issues in Designing a Command Language Interface
	Menu-based interfaces
	Scrolling Menu
	Walking Menu
	Hierarchical Menu:
	Direct Manipulation Interfaces
	Main aspects of Graphical UI, Text based Interface Aspects of GUI
	Text Based Interface

	Content

	Chapter -6
	Software Coding & Testing
	Coding Standards and Guidelines
	Code Walk-Through
	Code Inspection and Software Documentation` Code Inspection
	Software Documentation`
	Internal Documentation
	External documentation

	Distinguish among Unit Testing, Integration Testing, and System Testing
	Unit Testing
	Driver and Stub Modules

	Global Data
	Methods of Black –Box Testing
	Equivalence class Partitioning and Boundary Value Analysis
	Equivalence Class Partitioning
	Summary of the Black-box test suite Design

	Methodologies for White –Box Testing
	Different white box methodologies: statement coverage branch coverage, condition coverage, path coverage, data flow based testing and mutation testing.
	Statement Coverage
	Branch Coverage
	Condition Coverage
	Path Coverage
	Control Flow Graph (CFG)
	Path
	McCabe’s Cyclomatic Complexity Metric

	Example:
	Data Flow – Based Testing
	Mutation Testing
	Debugging
	Debugging Approaches
	a. Buffer Force Method
	b. Backtracking
	c. Cause Elimination Method
	d. Program Slicing
	Debugging Guidelines

	Need for Integration Testing
	Big – Bang Approach
	Top – Down Approach
	Bottom – up Integration Testing
	Mixed Integration Testing

	System Testing: Alphas, Beta and Acceptance Testing
	Alpha Testing
	Beta testing
	Acceptance Testing
	Performance Testing

	Need for Stress Testing and Error Seeding
	Stress Testing
	Volume Testing
	Configuration Testing
	Compatibility Testing
	Regression Testing
	Recovery Testing
	Maintenance Testing
	Documentation Testing
	Usability Testing
	Error Seeding

	General Issues Associated with Testing
	Test Documentation
	Regression Testing

	Content
	Chapter-7
	Software Reliability
	Importance of Software Reliability
	Software Reliability and Hardware Reliability

	Distinguish between the Different Reliability Metrics
	 Rate of Occurrence of Failure (ROCOF)
	 Probability of Failure ON Demand (POFOD)
	 Availability
	Mean TIME TO Failure (MTTF)
	Mean Time to Repair (MTTR)
	Mean Time Between Failures (MTBF)
	Portability
	Reusability
	Correctness
	Maintainability

	Reliability Growth Modeling
	Littlewood and Verall's Model

	Characteristics of Quality Software
	Evolution of Software Quality Management System Software Quality Management System
	 Management structural and individual responsibilities
	 Quality system activities
	Evolution of Quality Systems

	Importance, Requirement and Procedure to Gain ISO 9000 Certification for Software Industry
	Requirement of ISO 9000 Certification
	Procedure to gain ISO 9000 Certification
	SEI Capability Maturity Model (SEI CMM)
	Compare between ISO 9000 Certification and SEI/CMM

	Model Question for Software Engineering
	Model Question carrying 2 marks each.

	Model Question carrying 6 marks each
	Model Question carrying 8 marks each.

