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CHAPTER 1.0

SIMPLE STRESS AND STRAIN
1.1 - Types of Load

Load is an external force. Hydraulic force, steam pressure, tensile force, compressive force,
shear force, spring force and different types of load. Again load may be classified as live load, dead
load.

Definition

Strength of material is the study of the behaviour of structural and machine members under
the action of external loads, taking into account the internal forces created and resulting deformation.

Types of load

The simplest type of load (P) is a direct pull or push, known technically as tension or
compression. 1 X
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If a member is in motion the load may be caused partly by dynamic or inertia forces. For
instance, the connecting Rod of a reciprocating engine, load on a fly wheel.
STRESS

Definition

The Force transmitted across any section, divided by the area of that section, is called intensity
of stress or stress.
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Where A &
o - Stress
P - Load
A- Area

o A - Internal forces of cohesion

Direct stress (Tensile / compressive)

Stresses which are normal to the plane on which they act are called direct stresses and
either tensile or compressive.
Unit- N/ m2

STRAIN
Stain is a measure of the measure of the deformation produced in the member by the load.
If a rod of length L is in tension and the elongation produced is L, then the direct

train= Elongation S—X
SUAIN= Sriginal length ©~ L

Tensile strain will be positive compressive strain will be negative.



Hooke’s Law
This states that strain is proportional to the stress producing it.
A material is said to be elastic if all the deformations are proportional to the load.

Principle of superposition

It states that the resultant strain will be the sum of the individual strains caused by each load
acting separately.

Young’s Modules

Within the limits for which Hooke’s law is obeyed, the ratio of the direct stress to the strain
produced is called young’s modules or the modules of Elasticity, i.e. E = E= °
€

For a bar of uniform cross-section A and length L this can be written as E= % or %=X

Tangential Stress

If the applied load persists of two equal and opposite parallel forces not in the same line, then
there is a tendency for one part of the body to slide over or shear from the other part across any
section LM.

> P

e e — M Area of gross section
P < is parallel to load

Shear stress is tangential to the area over which it acts.

Every shear stress is accompanied by an equal complementary shear stress.

The shear strain or slide is ¢, and can be defined as the change in the right angle. It is
measured in radians.

Shear Strain

Modules of rigidity

For elastic material shear strain is proportional to the shear stress.

Shear Stress

= Modules of rigidit
° Shear Strain gldity

Rati

Ratio G=— N/mm?
¢



1.2 Stresses in composite section

Any tensile or compressive member which consists of two or more bars or tubes in parallel,
usually of different materials in called compound bars.

Analysis

A compound bar is made up of a rod of areaA, and modules E1 and a tube of equal length of
area A2 and modules E2. If a compressive load P is applied to the compound bar find how the load
is shared. Since the road and tube are of the same initial length and must remain together then the
strain in each part must be the same. The total load carried is P and let if be shared W1 and W2,

g, =€, ,L1=L2

W, W,
AE, A,E,

compatibility equation :

Equilibrium equation : W, + W, =P

AE,
A.E

Substituting, W, = x W,

1 1

from (i)&(ii)givenW1(1+%) =P or

1 1

W - PA,E,
" A E,+A,E,
ThenW, = PA.E,
A,E,+A,E,
Example

A composite bar is made up of a brass rod of 25m diameter enclosed in a steel tube, being
co-axial of 40mm external diameters and 30mm internal diameter as shown below. They are securely
fixed at each end. If the stress in brass and steel are not to exceed 70MPa and 120 MPa respectively
find the load (P) the composite bar can safely carry.

P «—— 25mm —p

N 500 mm ]

Also find the change in length, if the composite bar is 500mm long. Take E for steel Tube as
200 GPa and brass rod as 80 GPa respectively.

Data Given

Let steel tube denoted as 1 and brass rod denoted as 2

d10= 40mm E1=200GPa

d1i = 30mm E2 =80 GPa

d2 = 26mm

o 1=120 MPa W1 - Load carried by tube

o 1=70 MPa W2 - Load carried by rod.



From compatibility equation :

W, W,

AEy AR,

T, 2 2 T, i n2 2
A, =—(dy -diy )=—(40°-30
= —d =5 )

= A1 =500m m2

2 2

== 252 -491mm
4
Now putting inequation —(1)
- W1 =W2 « 550x200
491x80
W1 =0y A1 =120 x550=66000N
W
andW2 M 66000
2.8
Fromequlibrium equation

:>P=W1+W2

=66000 +2357 =89.57KW (Ans)

Changeinlength

W,/

50, =50 = 11 _ 66000x5003:
A4E; 550x200x10

=2357N

0.3mm

Poisson’s Ratio

The ratio between lateral strain to the liner strain is a constant which is known as poisson’s
ratio.

The symbol is ‘W’
Bulk Modules

When a body is subjected to three mutually perpendicular stresses of equal intensity the
ratio of direct stress to the corresponding volumetric strain is known as bulk modules.
P

Fig. K =———
SVILY;

P - hydrostatic pressure

(-) - negative sign taking account of the reduction in volume.



Relation between K and E

The above figure represents a unit cube of material under the action of a uniform pressure P.

It is clear that the principle stresses are -P, -P and -P and the linear strain in each direction is

-P/E + UP/E + UP/E = % (1-2 1)

But we know

Volumetric strain = sum of linear strain

-P

By defination K =

y defination SYILY;

or K = 3P_P
—(1-2
E ( )

orK-——°
3(1-2un)

or E = 3K (1-2 1)

Relation between E and G

C
T0O
ae\/ .
‘_ﬁ
A 45° B
9
J2

It is necessary first of all to establish the relation between a pure shear and pure normal
stress system at a point in an elastic material.

In the above figure the applied stresses are o tensile on AB and o compressive on BC. If the
stress components on a plane AC at 45° to AB are O and 7 0 Then the forces acting are as

shown taking the area on AC as units.

Resolving along and at right angle to AC

1y=—=Sin45+—-Cos45 =c

Zo"

9 Cos45- -2Sin 45 =0

2 2

So a pure shear on planes at 45° to AB and BC.

andcez
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This figure shows a square element ABCD, sides of unstrained length 2 units under the
action of equal normal stresses, o tension & compression. then it has been shown that the element

EFGH is in pure shear of equal magnitude o .

Liner strain in direction EG =2+ £2
E E
_b
Saye==—(1+np)
E
LinerstrainindirectionHF:—%_L:E_G:

- &

Hence the strained lengths of EO and HO are | + € and | - € respectively.

The shear strain (ng

on one element EFGH and the angle EHG will increase by t01—-c+(p and angle EHO =
4

Considering the triangle tan EHO =E|—8
tan(E+9):1+_8
4 2" 1-¢
n ¢
tan—+tan—
1+8:tan 2
-2 1-tanZ.tan?
4 2
1+2
__ 2
1-@
2
o ®
2
(&) (&)
1+p)—=—
(+w)—=25
then rearranging E= 2G (1+ 1)

9GK

by removing U, E =
Y gH G +3K

2
42



1.3 Temperature stress
Determination of temperature stress in composite bar (single core).

Temperature stresses in Composite Bar

If a compound bar made up of several materials is subjected to a change in temperature
there will be tendency for the components parts to expand different amounts due to the unequal co-
efficient of thermal expansion. If the parts are constrained to remain together then the actual change
in length must be the same for each. This change is the resultant of the effects due to temperature
and stresses condition.

Now let o, = Stress in brass
& , = Strain in brass
a , = Coefficient of liner expausion for brass
A, = Cross sectional area of brass bar
and 0 ,, ¢,, a , A, = Corresponding values for steel.
& =Actual strain of the composite bar per unit length.
As compressive load on the brass in equal to the tensile load on the steel, therefore
o, A =0,A,
straininbrass ¢ ,= a,t-¢

£ ,= &- O, Atz

g e, = Q At1+ (sztz = At(OL1—OLz)1

Thermal stresses in simple bar

LetL = original length of the body
At =Increase in temperature

o = Coefficient of liner expansion.

We know that the increase in length due to increase of temperature

oL=La At
8:&:LocAt:OLAt
L L

Stresso=¢E

Example -1

An aluminium alloy bar fixed at its both ends is heated through 20K find the stress developed
in the bar. Take modules of elasticity and coefficient of linear expansion for the bar material as 80
GPa and 24 X 10-%/K respectively.

Data Given
At =20K
E = 80GPa = 80 X 10° N/mm?
o =24 X 109K



Solution
Then the thermal stress
ot=a AtE=24x10 *x20x80x10°
=38.4N/mm?=38.4mPa
Example - 2

A flat steel bar 200mm X 20mm X 8mm is placed between two aluminium bars 200mm X
20mm X 6mm. So as to form a composite bar. All the three bars are fastened together at room
temperature. Find the stresses in each bar where the temperature of the whole assembly in raised

through 50°c, Assume E_=200GPa, E,=80GPa, 0s=12x10°/°c, 0,=24x10"°/c

Data given
Aluminium 6mm
Steel 8mm
Aluminium 6mm

At =50°, Es = 200GPa = 200 x 103 N/mm?
€a=80GPa = 80 x 103 N/mm?

as=12x1o'6/0c, a, =24x1o'6/0c

Solution

As =20 x 8 =160 mm?
Aa=2x20x6 =240 mm?
Aa 240

(XS :A—SXGAZWXGA:/IQSGA

Cs Cs
%8 s onnu1nd
€S 200x10
Ca Ca
Sa: —:—3
€a 80x10

eg+eg=t(ag—ag)
GS " Ga
200x10° 80x103

-50(24x10 ~%-12x1076)
1.5Ga n Ga

or,
200x10° 80x10°3

~50x12x10~©
—6 5=30N/mm? =30MPa

6 ;=150 =1.5x30=45 N/ mm?2 =45MPa



1.4. Strain energy resilience stress due to gradually applied load
and compact load.

Load

Extension
Strain Enerqy

The strain energy (U) of the bar is defined as the work done by the load in strain it.

For a gradually applied load or static load the work done is represented by the shaded area in
above figure.

C

1 oaL=1% vl
2E 2E

Resilience

The strain energy per unit volume usually called as resilience in simple tension or compression

2
(o)

IS E

Proof resilience

It is the value at the elastic limit or at the proof stress for non-ferrous materials.

Strain energy is always a positive quantity and being work units will be expressed as Nm (i.e.
joules)
Example 1

Calculate the strain energy of the bolt as shown below under a tensile load of 10 KN. Show
that the strain energy is increased for the same max stress by turning down the same of the bolt to
the root diameter of the turned, E=20500 N/mm?

Data Given 50mm e 25mm
T e
F'________ e————— SN
P=10 KN, E= 205,000 N/mm?
Solution

It is a normal practice to assume that the load is distributed events over the core.
T 2 2
A, :216.6 =217mm

P 10,000

' ion=-—= =46N/mm?
Stress in screwed portion A 217

P 10,000
Stress in shank = IR 31.8N/mm?
C

T 202
4



Total strain Energy = ;(462x210x25 +31.8°x314x50) = 67N/ mm?
2x205000
If turnedto16.6mm
E=;(462x217x75) =84N/mm
2x205000

Impact load -

Supposing a weight W falls through a height ‘h’ on to ‘a’ collar attached to one end of a
uniform bar, the other end being fined. Then an extension will be caused which is greater than that
due to one application of the same load gradually applied.

Let X is the maximum extension, set up and the corresponding strain is o .

Let P be the equivalent static load which would produced the same extension X.

Then the strain energy at this instant = E1 :é(cs1 -uo,)

Pd
4tE

orE1= (2—p)

Neglecting loss of energy at compact loss of PE of weight = Gain of strain energy.

w(h+x)=%Px

orw(h+ 5= 1 pa s AE
AE’ 2

Rearrangingandmultiplyingthrough AE /L
P?/2-WP-WhAE/L=0
Solvinganddiscardingthenegativeroot

P=W +/W?+2WGAE/L
~W[1+1+ 2hAE/WL]

Fromwhich Xzﬂ,G=E canbefound
AE A

Whenh=0,P=2W

i.e. the stress produced by a suddenly applied load is twice the static stress. Ex- Referring
figure-1, let a mass of 100Kg falls 4cm on to a collar attached to a bar of 2 cm dia, 3mm long find
max stress, E= 205,000N/mm?

o=l W L AT 2hAETWL]

A A
981 2x40xm100x205000
=———07 [+ [1+ |
1007 981x3x1000

=134N/mm?



CHAPTER 2.0.
THIN CYLINDER AND SPHERICAL SHELL
UNDER INTERNAL PRESSURE

2.1. Definition of hoop stress

By symmetry the three principal stresses in the shell will be the
(i) circumferential or hoop stress

(i) longitudinal stress

(iii) radial stress.

Thin cylinder :

If the ratio of thickness to internal diamer is less than about 1/20, then the hoop stress and
longitudinal stress are constant over the thickness and the radial stress is small and can be
neglected.

2.2 Hoop stress or circumferential stress derivation

011‘_d_’l (o

Let d-internal diameter

| - length of cylinder

t - thickness

p - pressure

consider the equilibrium of a half cylinder of length L.

section through a diameteral plane, & 1 acts on an area 2tL and the resultant vertical pressure
force is found from the projected area horizontal d x L
Equating forces

ox2xtL=PxdxL
_PD
"2t
hoop stress in a tensile stress acts circumferentially on the cylinder.

Longitudinal stress O, Derivation

) EF

Consider the equilibrium of a section cut by a transverse plane, o, acts on an area 7,, dt

o1 11

!

(d should be the main diameter) and pacts on a projected area of %dzequating the forces.



Equatingtheforces

o, xdt=P x> d
4

Whatever the actual shape of the end

Pd

i.e. 02 :E

In case of long cylinder or tubes this stress may be neglected.

Thin spherical shell under internal pressure derivation

Again the radial stress will be neglected and the circumferential or hoop stress will be neglected
and by symmetry the two principal stresses are equal, in fact the stress in any tangential direction

is equalto o .

From above figure it is seen that

cmdt=|3£d2
4

ie.c=—
4t

Volumetric strain

(92 «—

Hoop Strain
1
81=E(G1_“02)
Pd
ore,=——(2-
1 4t1E( 1)

Longitudinal Strain

1
g, ZE(Gz —uo,)

d - internal diameter

s (02)




Volumetric Strain on capacity

The capacity of a cyIinder%dzL If the dimension is increased by ddanddL, the volumetric strain

(d+3d)(L +8L)-d’L
d’L

_[d’L+d?5L + 28d.dL + 25d.d.5L + 8d’L + 8d*3Ld?L]
- d’L
=(d*5L +258d.dL)/d’L
=2.5d/d+3L/L
=2xdiameteralstrain +longitudinalstrain
=2xhoopstrain +longitudinal strain

Change in volume = (2g,+§g,) volume

For spherical shell, volume strain = 3 x hoop strain
Change in diameter = g,.d
Change inlength=g,. L

Example — 1

A gas cylinder of internal diameter 40mm is 5mm thick, if the tensile stress in the material is
not to exceed 30 MPa, find the maximum pressure which can be allowed in the cylinder.

Data given
D =40mm, t = 5m

0 1= 30MPa = 30 N/mm2
Solution

Pd
weknow,c, :E

_Px40
2x5

=P=7.5MPa

or, 30

Example — 2

A cylindrical thin drum 80mm diameter and 4m long is made 10mm thick plates. If the drum
is subjected to an internal pressure of 2.5MPa determine its changes is diameter and length. E =
200GPa.

Data given

d =80 mm
L=4m
T=10mm

P =2.5 N/mm2

E =200 x10°N/mm?



Solution

Pd
- (2-
4,[E( 19)
~ 2.5x800
' 4x10x200x10°

2
2.5x800 <1.75
4x 200x10°

=0.35mm (Ans)

&

(2-0.25)

dd=¢€,xd=

Change in length

_Pd 1
2 2tE 2
SL=¢,L
PdL 1
T
2.5x800x4x10° 1
= —-0.25
4x10x200x10° (2 )

=0.5mm(Ans)

1Y)

Example — 3
A cylindrical vessel 2m long and 500mm dia with 10mm thick plates in subjected to an internal

pressure of 3MPa, calculate the change in volume of the vessel.

E=200GPa, p =0.3

Data given
L=2x10mm
d =500 mm
t=10mm
P =3MPa

E =200 x 10°N/mm?

Pd 1

8 —_ (— —

2 2tE(2 )
_ 3x500 i (1_0.3)
2x10x200x10° 2
=0.075x1073

V=292 =X x5002x2x10°
4 4

=392.2x10°mm?®
Change in Volume
=V (2g,-€,)
=392.7 (2x.32x10% +.075 x 107%)

=185 x 103mm?3



CHAPATER. 3.0
TWO DIMENSION STRESS SYSTEMS

3.1 Determination of normal stress, shear stress and resultant stress on oblique plane.

In many instances, however, both direct and shear stresses are brought into play, and the
resultants stress across any section will be neither normal nor tangential to the plane.

If o, Is the resultants stress making an angle 7 with the normal to the plane on which of acts.

Fig 3.1
J Fig 3.2

cp:tanl
(@)

2 2
Op=4/0" +7T

Stress on oblique plane

e 2|

. o
Fig3.4 Fig 3.5 AB 4
Fig 3.3

The problemis to find the stress acting on any plane AC at an angle g to AB. This stress will

not be normal to the plane, and may be resolved into two components 6, and g .

As per Figure 3.4 show the stresses acting on the three planes of the triangular prism ABC.

There can be no stress on the plane BC, which is a longitudinal plane of the bar, the stress Ty must
be up the plane for equilibrium.

Figure 3.5 shows the forces acting on the prism, taking a thickness t perpendicular the figure.

The equations of equilibrium resolve in the direction of o,
ce.AC.t:GAB.tCOSO
AB
=c,=0(——)Cos0
Ge G(AC)

=cCos?0



Resolve in the direction 7
19-AC.t=cAB.tSin6
:tezc(ﬁ—g)Sine
=15=0Cos”.0Sin6
=T =1GSin29

2
=0, =(c; +12)

—G+/C0s*0+C0s?0.5in 20
~.0,=cCos0

It is seen that maximum shear stress is equal to one-half the applied stress and acts on
planes at 45°to it.

Pure Shear

As the figures will always be right-angled triangles there will be no loss of generality by
assuming the hypotenuse to be of unit length. By making use of these specification it will be found
that the area on which the stresses act are proportional to 1 (for AC), Sing (for BC) and Sing (for
AB) and future figures will show the forces acting on such an element.

tCos0

Let tue 7 act on a plane AB and there is an equal complementary shear stress on plane BC.
The aim is to find 60 & t0 acting on AC at® angle o to AB.

Resolving in the direction of o,

09x1:(rCos 0)Sin0+ (tSin6).Cos6
=1Sin20

Resolving in the direction of T,

rex1=(rSin 0)Sin6— (tCos6).Cosb
=—-1C0s20(6(45)downtoplane

G, =4/0° +1%, =1at20to1,

Pure Normal stresses on give planes

o, Sind
A /(

Let the known stresses becs,on BC ands,on AB, then the forces on the element are
proportional to those shown.

B

c,Coso



Resolving in the direction of o,

S.0g=0, Cos’6+0 , Sin’0

Resolving in the direction of T,

1,=6,Cos0Sin6-c, Sin6CosH

ST, =%(G v—0 x)Sin26

General two dimensional Stress system

C

—1—* o, Sind
tSin®

—_—

tCos0

c,Cos0
Resolving in the direction of o,

G =0y Cos0Cos0 +o, Sin6Sin6+ 1CosO SinB+tSin Coso

2 2
:GY(1+COS 0 )+0X(1—C;S 0 )+’ESin29

=%(0Y + GX)+%(GY -5,)1Cos’0+1Sin’0

Resolving in the direction of T,

1,=0, C0s0Sin0-c , Sin6Cos O
—1C0s0Co0s0+1Sin0Sin0O
STy :%(G v—6 5)Sin20—-1Cos26
Example — 1

If the stress on two perpendicular planes through a point are 60 N/mm2 tension, 40 N/mm2
compression and 30 N/mm2 shear find the stress components and resultant stress on a plane at
60° to that of the tensile stresses.

%

Oy <1—> 40Sin60°
30Sin60°

60°

> 30Cos60°

Y
30Cos60°



Resolving

g =60Cos60 ® Cos60° —40Sin60°.Sin60° + 30 CosB0° Sin60° + 30 Sin60° Cos60°

11I£1f J_1

=60Xx— Xx——40 x> +30X12 x—
272 2 2 2 2
:15-30+7.5I+7.5J‘
_ _ 2
—69_11N/mm
and

Ty =60Cos60 °. Sin60° +40Sin60 °.Cos60° —30Cos60° Cos60° +30Sin60° Sin60°

—154/3+10/3-7.5+22.5
=58.3 N/mm?

=,/(112+58.32)=59.3N/mm?

atangletothe

~—==80°15°

58.3 (20° to the 60 N/mm?)

Principal Planes

From equation

Ty Z%(G v— 0 »)Sin20—1Cos26

There are values of 0 for which 7, is zero and the plane on which the shear component is
zero are called principal planes.

From equation above.

tan2, =—2°  (when —t,=0)
0 (cy—0x 0

This gives two values of 2 0 differing by 180° and hence two values of 0 differing by 90°i.e. the
principle planes are two planes at right angles.

Sin20=+ 2t
\/(GY—GX) +41
Cos20=+ Oy Ox




Principal Stresses

The stresses on the principal planes will be pure normal (tension or compression) and their
values are called the principal stresses.
We know,

A :%(GY + GX)+%(GY -0y )X Cos20+1Sin20

O,

Principalstresses=

Shorter method for principal stresses

C
7 > 1Cos0

i—v 0,Sin6
tSin0

A

c,Cos6

Let AC be a principal plane and o the principal stress acting on itg, g and t are the known
stress on planes BC and AB as before.

Resolve in the direction of g

Sin0=o, Sin0+1tCos 0

orc—oc,=1Cos0 ...... 1

Resolve in the direction of g,

cCos0=c,CosO+1Sin0

orc-o, =ttanb ..... (2)

Multiply corresponding sides of equations (1) and (2) i.e.
(6-0,)(c-0,)="1°

ore®—(o, + 6,)6+0,0, -1?=0
Solving

ax®+bx+c=1

e ~1b++b*—4ca

2a
Here

GZ(GX +o,)t \/(csx +o, ) —40,0,+ 4+°
2

Ol'cs:%(crX +Gy)i%1/(ﬁx -o, Y +4+1°

The values of 0 for the principal planes are of course found by substitution of the principal
stresses values in equation (1) & (2).




Maximum shear stress
T,
91C
Gey

A 0 B

!

c,Cos0

G,Sin 6

Let AB and BC be the principal planes and 0 1and 9 2the principal stresses.

Then resolve

T9 =02 Cos6. Sin —c, Sin6.Coso

=1§(62 -,)Sin26

Hence the maximum shear stress occurs when 2 0= 90°i.e. on planes at 45° to the principal
planes and its magnitude is
1

Tmax = E(GZ - G1)

Z%\/[(GX o, ) +47]

In words : The maximum shear stress is one-half the algebraic difference between the principal
stresses.

Example — 2

At a section in abeam the tensile stress due to bending is 50 N/mm? and there is a shear
stress of 20 N/mm?2. Determine from first principles the magnitude and direction of the principal
stresses and calculate the maximum shear stress.

Solution o C
i » 50N/mm?xSin®
A /(

- 5 B
20N/mm?xCos0

20N/mm?xSin®

Resolve in the direction AB :

cSin0=50Sin0+20Cos0
6-50=20cot0...... (1
Resolve in the direction BC :

6Cos6=20Sin0......(2)
c=20tano
Multiplying corresponding sides of equations (i) and (ii)
o(c-50) =202
o> -505-400=0
50+10,/(25-16)
2

=570r-7

50+ 64




i.e. the principal stresses are 57 N/mm? tension, 7 N/mm?2 compression,

c 57 -7
tanb= — =—or—

20 20 20
Giving 0=70%and 160°, being the directions of the principal planes.
Max shear stress =

= 1(02 -0)

2
1

—[57 (-7
S[B7 (=7
=32N/mm?
and the planes of maximum shear are at 45° to be principle planes i.e. 0=25% and 115°. (Ans)

Maximum shear stress using Mohr’s Circle

The stress circle will be developed to find the stress components on any plane AC which
makes an angle 9 with AB.

Construction

Mark off PL = 9 1and PM = O 2(positive direction to the right). It is shown here for 92 ) O 1,
but this is not a necessary condition. On LM as diameter describes a circle center O.

Then the radius OL represents the plane of O 1 (BC)and OM represents the plane of 9 2(AB)
plane AC is obtained by rotating. AB through ¢ anticlockwise, and if OM on the stress circle is

rotated through 2 ¢ in the same direction, the radius OR in obtained which will be shown to represent
the plane AC.

OR could equally will be obtained by rotating OL clockwise through 180°-2 g, corresponding
to rotating BC clockwise through 90°-¢ .



Draw RN L rto PM
Then PN = PO + ON

=%(cx1 +0,) +%(cs2 —-o,)Cos20
(1-Cos26) (1+Cos260)
1 +0,
2 2
=0, Sin*0+ 5,C0s%0)=c,, the normal stress componenton AC

and RN =%(cs2 -0,)Sin26

=14,theshear stresscomponenton AC

Alsotheresultantstress

=c, =4/(c% +1%) =PR

And its inclination to the normal of the plane is given ¢=(RPN

g is found to be a tensile stress and tyis considered positive if R is above PM,

The stresses on the plane AD, at right angles for AC, are obtained from the radius OR/, at
180°% to OR

ie.c'y=PN',7",=R'N’

and T, =T16 but of opposite type, tending to give an anticlockwise rotation.
The maximum shear stress occurs when RN=OR , i.e. 9 =45° and is equal in magnitude to

1
OR=§(02—01)The maximum value of ¢ is obtained when PR is a tangent to the stress circle.

Two particular cases which have previously been treated analytically will be dealt with by this
method.
1. Pure compression

IF o is the compressive stress the other principal stress is zero.

91C R
Gy
«— G 200 p
L S M
A 0 B

PL = o numerically, measured to the left for compression, PM =0

Hence,OR :%c

cq=PN,Compressive
Ty = PN,Positive

Maximum shearstress= OR :%c occuringwhen9=45°



2. Principal stresses equal tension and compression

Gey
g «— 0O p/ 20
////// L SO
A 0 B

PM = o to the right g
PL = oto the left

Here O coincides with P

o, =PN,istensilefor

Obetween+45°, compressive for

Obetween45°and135°

1, =RN when6=45°

7, reachmaximum=ac,on planes when the normal stress is zero (Pure shear)
Example -3

A piece of materials is subjected to two compressive stresses at right angles, their values
being 40 N/mm2 and 60 N/mmz2. Find the position of the plane across which the resultant stress in
most inclined to the normal and determine the value of this resultant stress.

Solution

c,=60N/mm?* Compressure)
o, =40N/mm?*(Compressure)

In the figure, the angle ¢ is inclined to the plane of the 40 tons N/m2 compression.
R

Oy C
«——60 L 20 ?
0 M
B

In above figure PL =60, PM=40, The maximum angle @is obtained when PR is a tangent to
the stress circle.

40

OR=10,PO =50
Theng=Sin™ %:1 1°30/

o, =PR=-/(50%-10%)=-49N/mm?
20=90-¢
0=39"15'
whichgivestheplanerequired



Example -4

At a point in a piece of elastic material there are three mutually perpendicular planes on
which the stresses are as follows : tensile stress 50 N/mm2, shear stress 40 N/mm2 on plane,
compressive stress 35 N/mm2 and complementary shear stress 40 N/mm2 on the second plane,
no stress on the third plane. Find (a) the principal stresses and the positions of the plane on which
they act (b) the position of the planes on which there is no normal stress.

Solution
Mark off PN =50, NR =40

PN/ = -35, N'R'= -40

Join RR/, Cutting NN at 0, Draw circle centre O, radius OR

1
Then ON = 2 NN/

=425

OR=+/42.5% +40° =58.4
PO=PN-ON=7.5
(a) The Principal stresses are
PM = PO + OM = 6.5 N/mm? (tensile)
PL = OL - OP = 50.9 N/mm? (compressure)

or, 260 = tan-1-20__43° 20/
425

—=0=2140
(b) If there is no normal stress, then for that plane N and P coincides and

20 = 180 Cos/ > 50
58.4 40

20 = 97° 24/
0=48° 42/ totheprincipalplane

<+—— 50.9

21° 40/

\(‘ 320/ 165.9
\
b
35 \

40 \




CHAPTER 4.0

SHEAR FORCE & BENDING MOMENT

4.1 — Types of beam and load
Beam

A structural member which is acted upon by a system of external loads at right angles to its
axis is known as beam.

Types of Beam

Cantilever beam

Simply supported beam
Over hanging beam

Rigidity fixedor builtin beams
Contimous beam

ok w0~

Types of load
1. Concentrated or pointload

2. Uniformly distributed load
3. Uniformly varying load

l INAAANNNS
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4.2. Concepts of share force and bending moment
Shear force

The shearing force at any section of beam represents the tendency for the portion of beam to
one side of the section of slide or shear laterally relative to the other portion.

W$F1W

The resultant of the loads and reactions to the left of Ais vertically upwards and the since the
whole became is in equilibrium, the resultant of the forces to the right of AA must also be F acting
down ward. F is called the shearing force.



Definition

The shearing force at any section of a beam is the algebraic sum of the lateral component of
the forces on either side of the section.

Shearing force will be considered positive when the resultant of the forces to the left is upwards

or to the right in downward.

A shear force diagram is one which shows the variation of shearing force along the length of
the beam.

Concepts of Bending Moment

In a small manner it can be argued that if the moment about the section AA of the forces to the
left is M clockwise then the moment of the forces to the right of AA must be anticlockwise. M is
called the bending moment.

Definition

The algebraic sum of the moments about the section of all the forces acting on other side of
the section.

Bending moment will be considered positive when the moment on the left of section is
clockwise and on the right portion anticlockwise. This is referred as sagging the beam because
concave upwards. Negative B.M is termed as hogging. ABMD is one which shows the variation of
bending moment along the length of the beam.

4.3 Shear force and bending moment diagram and its silent features.
i. lustration in cantilever beam
ii. llustration in simply supported beam
iii. llustration in overhang beam
Carrying pointload and u.d.L.

Concentrated loads

Example -1
A cantilever of length L carries a concentrated load W at its free end, draw the SF & BM
diagram. WL
»
- L /I -
- X > i
W
F W
SFD
M BMD WL




Solution
At a section a distance x from the free end, consider the forces to the left.

Then F = — W, and in constant along the whole beam for all values of x. Taking moments
about the section given M = -Wx

Ax=0,M=0,At—x=L, M= -WL
At end from equilibrium condition the fixing moment is WL and reactions W.
Example — 2

A beam 10m long is simply supported at its ends and carries concentrated loads of 30 KN
and 50 KN at distance of 3m from each and. Draw the SF & BM diagram.

30KN 50KN
3m | 4m 3m
R, £ R,
10m
36
6
44
132
L1108

Solution

First calculate R1 and R2 at support

R1x10=30x7+50x3

=R1 = 36KN

and R2 = 30+50 — 36 = 44KN

Let x be the distance of the section from the left hand end.
Shearing force

O <x<3m, F=36KN

3<x<7,F=36-30=6KN

7 <x <10, F = 36-30-50= -44 KN.

Bending moment
0<X,3M=R1X=36xKNM
3<X,7,M=R1X-30 (X-3)=6X +90 KNM
Kx<10,7,M=R1X-30 (X-3)- 50 (X-7) =44 X + 440 KNM

Principal values of M are
at X=3m, m = 108 KNM
atx=7m, M =132 KNM
atx=10,M=0.



