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Introduction 

 

Signal: 

 

A signal is defined as any physical quantity th a t varies with time, space, or any other in 

dependent variable or variables. Mathematically, we describe a signal as a function ofone or 

mo re independent variables. For example, the functions 

s(t)= 5t 

describe a signal,one that varies linearly with the ind ep end ent variablet (time). 

 

 

This functiondescribes a signaloftwo independent variables x and ythat could represent the two 

spatial coordinates in a p lane. 

System: 

Asystem may also be defined as a physicaldevice th a t performs an operatioon a signal. For 

ex ample, a filter used to reduce the noise and interference corrupting desired in formation 

bearing signal is called a system . 

signal processing: 

 

W h en we pass a signal thrugh a system , as in filtering, we say that we have processed the 

signal. In this case the processing of the signal involves filtering the noise and interference 

from the desired signal. If the operation on the signal is n o n linear, the system is said to be 

non linear, and so forth . Such operations are usually referred to as signal rocessing. Analog 

signal processing: 

 

 

 

 

 

Digitalsignalprocessing: 
 

 

 

 

 



3|Page  

 

 

AdvantagesofDigitaloverAnalog SignalProcessing: 

 

1- a digitalprogrammable systemallow s flexibility in re configuring the digital signalprocessing 

operations simply by changing the program . 

2- adigitalsystemprovidesmuchbettercontrolofaccuracy. 

 

3- Digital signals are easily stored on magnetic media (tape or disk) without deterioration or loss 

of signal fidelity beyond that introduced in the A/D conversion. 

4- digitalimplementationofthesignalprocessingsystemischeaperthananalogsignal processing. 

Limitations: 

 

One practical limitation is the speed of operation of A /D converters and digital signal 

processors. We shall see that signals having extremely wide band widths require fast- 

sampling -rate A /D converters and fast digital signal processors. Hence there are analog 

signals with large bandwidths for which a digital processing approach is beyond the state of 

the art of digital hardware. 

Discretetimesignalsandsystems 

CLASSIFICATIONOFSIGNALS:Thereare3typesofsignals 

Continuous-timesignals:Continuous-timesignalsoranalogsignalsaredefined foreveryvalue of 

time. 

Discrete-timesignals:Discrete-timesignalsaredefinedonlyatcertainspecificvaluesoftime. 

Digital Signals: digital signal is defined as a function ofan integer independent variable and 

its values are taken from a finite set of possible values, which are represented by a string of 

0's and l's . 

DISCRETE-TIME SIGNALS : Adisc rete-time signalx{n) is a functionofan independent 

variable that is an integer. discrete-time signal is n o t defined at instants between two 

successive samples. Simply, the signalx (n ) is not defined for no ninteger valueso f n. So x(n) 

was obtained fromsampling an analog signal x a(t), then .i(n) = x a( nT) , where Tis the 

sampling period (i.e., the time between successive samples). 

Representationofdiscrete-timesignal: 
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Adiscrete-timesignalcanbe representedinvariousway.Butallcanberepresentedgraphically. 
 

 

 

 

Graphicalrepresentationofadiscrete-timesignal. 

 

Besides the graphical representation of a discrete-time signal or sequence as illustrated in 

aboveFig. there are some alternative representations that are often more convenient to use. These 

are: 

1. Functionalrepresentation: 

 

2. Tabularrepresentation: 
 

 

 

 

3. Sequencerepresentation:Aninfinite-durationsignalorsequencewiththetimeorigin(n 

= 

0)indicatedbythe symbol↑isrepresentedas 
 

 

Afinite-durationsequencecanberepresentedas 
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SomeElementaryDiscrete-TimeSignals: 

Indiscrete-time signals and systems there are a number ofbasic signals that appearoftenand play 

an important role. These signals are defined below . 

 

1. Unitsamplesequence/unitimpulse:Itisdenotedasδ(n)andisdefinedas 

 

theunitimpulsesequenceisasignal thatis zeroevery where,exceptatn =0whereitsvalueis unity. The 

graphical representation of δ(n ) is 
 

2. Unitstepsignal:Itisdenotedasu(n)andisdefined as 

 

Thegraphicalre presentationofu(n)is 
 

 

 

 

 

3. Unitrampsignal: Itisdenotedas ur(n) andisdefinedas 
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Thegraphicalrepresentationofur(n)is 
 

 

 

 

 

 

 

4-Exponentialsignal:It isasequenceoftheform 

 

Ifthe parameter a is real, then x(n) is a realsignal. illustratationof x(n) for various values ofthe 

parameter a is 

 

 

Whentheparameteraiscomplexvalued, itcanbeexpressedas 
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where rand ϴ arenowtheparameters.Hence wecanexpressx(n )as 

 

ClassificationofDiscrete-TimeSignals: 

1- Energysignalsand powersignals:TheenergyEofasignal x(n)isdefined as 

IfEisfinite(i.e.,0<E<∞),ifEisfinite,P=0.thenx( n) iscalledanenergysignal. 

 

Manysignals that possess infinite energy, have a finite average power. The average powerofa d 

iscrete-time signal x(n) is defined as 

Ifwedefine thesignalenergyofx(n)overthefiniteinterval—N<n<Nas 

 

theaverage powerofthe signalx(n)as 

ifEis infiniteand Pis finite.thesignaliscalleda powersignal. 

 

2- Periodicsignalsandaperiodic signals: 

 

signalx(n) isperiodicwithperiod N(N>0) ifandonlyif the 

sinusoidal signal of the form 

isperiodicwhenf0,isarationalnumber,thatis,iff0canbeexpressedas 

wherekandNareintegers. 

 

3- Symmetric(even)andantisymmetric(odd)signals: 

 

Arealvalued signalx(n )iscalled symmetric (even)if 
 

Ontheotherhand ,asignalx(n )iscalledantisymmetric(odd)if 
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We can illustrate that any arbitrary signal can be expressed as the sum of two signal 

components, oneofwhichisevenandtheotherodd. Theevensignalcomponent is formedby adding 

x(n) to x ( —n) and dividing by 2. that is. 

Similarly,we formanoddsignalcomponent x0(n)accordingtotherelation So 

we obtain x(n),that is, 

SimpleManipulationsofDiscrete-TimeSignals: 

 

Timeshifting: 

A signal x (n ) may be shifted in time by replacing the independent variable n by n — k, w 

here k isan integer.Ifk isa positive integer,the time shift results ina delayofthe signalby k 

unitso ftime. Ifk is a negative integer, thetime shift results inanadvanceofthe signalby \k\ units 

in time. 

Ex- Asignal x( n ) is graphically illustrated in Fig. below. Show a graphicalrepresentationofthe 

signals x( n — 3) and x( n + 2). 
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The signal x (n — 3) is obtained by delaying x(n) by three units in time. On the other hand, 

the signal x(n + 2 ) is obtained by advancing x ( n ) by two units in time. Note that delay 

correspondsto shiftingasignaltotheright, whereasadvance implies shiftingthesignaltothe left on 

the time axis. 

 

TimeFolding:Theoperationsoffoldingisdefinedby FD[x(n)] = 

x ( — n) 

 

Example: 
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Addition,multiplication, andscalingofsequences: 

 

Amplitude modifications include addition, multiplication, and scaling o f discrete-time 

signals. Amplitude scaling o f a signal by a constant A is accomplished by multiplying the 

value o f every signal sample by A. 

The sumoftwo signals x1( n) an d x2( n) is a signal y(n), whose value at any instant is equal to 

the sum of the values of these two signals at that instant, that is. 

 

 

Theproductoftwosignals issimilarlydefinedonasample-to-samplebasisas 

 

DISCRETE-TIMESYSTEMS: 

Adiscrete-time system is a device or algorithmthat operates on a discrete -time signal, called 

the inputo rexcitation, according to some w ell-defined rule,to produce another discrete-time 

signal called the output or response of the system . 

We say that the input signal x(n) is Transformed by the system in to a signal y(n), and the 

general relationship Between x( n) and y( n ) as 

 

where the symbolT denotes the transformation (also called an operator), or processing 

performed by the system on x(n) to produce y(n). 

 

RepresentationofDiscrete-TimeSystems: 

It is useful at this point to introduce a block diagram representation of discrete time systems. 

For this purpose we need to define some basic building blocks that can be interconnected to 

form complex systems. 

 

An adder: Figure below illustratesa system(adder)that performs the additiono ftwo signal 

sequences to form another (the sum ) sequence, which we denote as y(n). 
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A constant multiplier: This operation is depicted by below Fig., and simply represents 

applying a scale factor on the input x (n). 

 

A signal multiplier: Figure below illustrates the multiplication of two signal sequences to 

form another (the product) sequence, denoted in the figure as y(n). we can view the 

multiplicationoperation as memory less. 

Aunit delay element: Theunit delayisaspecialsystemthat simplydelaysthesignalpassing th 

rough it byone sample. Fig. below illustrates such a system.If the input signal is x(n), the 

output is x( n — 1). In fact, the sample x{n — 1) is stored in memoryat time n — 1 an d it is 

recalled fro m memory at time n to form y(n), 

 

The useofthe symbolz-1todenotethe unitofdelay 
 

 

 

Aunit advance element: In contrast to the unit delay, a unit advance moves the input x ( n ) 

ahead byone sample in time to yield x( n + 1). Fig. below illustrates this operation , with the 

operator z being used to denote the unit advance. 

 

 

 

ClassificationofDiscrete-TimeSystems: 
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TherearevarioustypesofDiscrete-TimeSystemssuch as 

 

1- Staticversusdynamicsystems: 

Adiscrete-time systemis called static ormemoryless ifits output at anyinstant ndepends at 

most on the input sample at the same time, but not on past or future samples of the input. In 

any other case, the system is said to be dynamic or to have memory.T h e systems described 

by the following input-output equations are both static or memory less 

 

y(n)=ax{n) 

y(n)=nx(n)+bx3(n) 

 

Ontheother hand, thesystemsdescribed bythe following input-output relationsaredynamic 

systems or systems with memory. 

Time-invariant versustime-variant systems: Wecansubdividethegeneralclassofsystems in 

tothe two broad categories, time -invariant systems and time -variant systems. Asystemis 

called time-in variant if its input-output characteristics do not change with time. A relaxed 

system T is time invariant o rshift invariant if and only if 

 

impliesthatforeveryinp ut signalx(n)a nd everytimeshiftk. 

Now if this output y{n, k) = y{n — k), for all possible values o f k, the system is time 

invariant. O nthe other hand , ifthe output y(n, k ) ≠ y( n — k), even for one value o fk, the 

system is time variant. 

 

Linearversus nonlinearsystems: The generalclass o fsystems canalso be subdivided into 

linear systems and nonlinear systems. Alinear system is one that satisfies the superposition 

principle. Simply stated, the principle o f superposition requires that the response o f the 

system to a weighted sum o f signals be equal to the corresponding weighted sum of the 

responses (outputs) of the system to each of the individual inputsignals.Arelaxed T system is 

linear if and only if 

 

foranyarbitraryinputsequences x\ (n)and x2(n),andanyarbitraryconstantsa1and a2. 
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Causalversusnoncausalsystems: 

Asystemissaid to be causal iftheoutputofthesystemat anytime n [i.e., y(n)] dependsonly on 

presentand past inputs [i.e.,x { n ), x(n - 1),x(n — 2 ) , . . . ] , but does not depend on future 

inputs [i.e., x(n + 1), x( n + 2 ) , . . . ] . In mathematical terms, the output of a causal system 

satisfies an equation of the form 

Ifa systemdoes not satisfythis definition, it is called noncausal. Sucha systemhas anoutput tha 

t depends not onlyon present and past inputs but also on future inputs. 

 

Stableversusunstablesystems: 

Anarbitraryrelaxed systemis said to be stable ifand only ifeverybounded input produces a 

bounded output ( i:e; BIBO ). 

 

The conditions that the input sequence x{n) and the output sequence y(n) are bounded is 

transla ted mathematically to mean that there exist some finite numbers, say M x and M y. 

such that 

 

 

for all n. If. for some bounded input sequence ,x(n), the output is unbounded (infinite), the 

system is classified as unstable . 

 

DISCRETE-TIMELINEARTIME-INVARIANTSYSTEMS: 

The linearity and time-invariance properties of the system , the response of the system to any 

arb itrary input signal can be expressed in terms of the unit sample response of the system . 

The gen eral form of the expression thatrelates the unitsample response of the system and the 

arbitrary input signal to the output signal, called the convolution sum or the convolution 

formula,isalsoderived.Thusweareabletodeterminetheoutputofanylinear,time- 
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invariantsystemtoanyarbitraryinputsignal. 

 

ResponseofLTISystemstoArbitraryInputs: 

 

TheConvolutionSum: 

An arbitrary input signal x( n) in to a weighted sum of impulses, We are now ready to 

determine the response of any relaxed linear system to any Input signal. First, we denote the 

response y(n, k) of the system to the input unit Sample sequence atn = k by the special 

symbol h(n, k), -∞<k < ∞. T h a t is, 

iftheinputisthearbitrarysignalx(n) thatisexpressed asasumofweightedimpulses,that is. 

 

thenthe responseofthe systemtox(n)isthe corresponding sumofweighted outputs,thatis, 
 

 

 

 

 

 

 

Clearly, the above equation follows from the superposition property of linear systems, and is 

know n as the superposition summation.th en by the time-invariance property , the responseof 

the system to the delayed unit sample sequence δ(n - k) is 

Consequently, the superpositionsummationformulainreducesto 

 

Theaboveformulagivestheresponsey(n)oftheLTIsystemasafunction oftheinputsignal 

x(n)andtheunitsample(impulse)responseh(n) iscalledaconvolutionsum. 

 

To summarize,theprocessofcomputingtheconvolutionbetweenx (k )andh(k) involvesthe 

following four steps. 
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1. Folding.Foldh(k)aboutk=0 toobtainh(-k ). 

2. Shifting,Shifth(—k)byn0totheright(left) ifn0ispositive(negative),toobtainh(n0— k). 

3. Multiplication. Multiplyx(k) byh(n0—k)toobtaintheproductsequencevn0(k) = x(k) h(n0— 

k). 

4. Summation.Sumallthevaluesoftheproductsequencevn0(k)toobtainthevalueofthe output at time 

n = n0. 

Example: 

Theimpulseresponseofalineartime-invariantsystemis 

Determine the response ofthe systemto the input signal 

 

Solution : We shall compute the convolution according to its formula. But we shall usegraphs 

of the sequences to aid us in the computation. In Fig. below we illustrate the input signal 

sequence x(k) and the impulse response h{k) of the system, using k as the time index. The first 

step in the computation of the convolution sum is to fold h(k). The folded sequence h(-k) is 

illustrated inconsequent figs . Now we can compute the output at n = 0. according to the 

convolution formula which is 

Sincetheshift n=0,weuseh(—k)directlywithoutshifting it.Theproduct sequence We 

continue the computation by evaluating the response of the system at n = 1. 

 

 

Finally, thesumofallthevaluesintheproductsequenceyields 

In a similarmanner, we canobtain y(2) byshiftingh ( - k ) two units to the right. And y(2) = 8. 

Theny(3)=3.y(4)=-2,y(5)=-1.Forn>5,wefindthaty(n)=0becausetheproduct sequences contain all 

zeros. 

Nextwewishtoevaluate y(n)forn<0.Webeginwithn=-1.Then 
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Finally,summingoverthevaluesoftheproductsequence,weobtain then 
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Nowwehavetheentire responseofthesystemfor-∞<n <∞.whichwesummarizebelow as 

 

 

PropertiesofConvolution:1- Commutative 

law : 

2- Associativelaw: 

 

3- Distributivelaw: 
 

 

Finite-DurationandInfinite-DurationImpulseResponsesystem: 

Linear time-invariant system s into two types, those that have a finite-duration Impulse 

response (FIR ) and those that have an infinite-duration impulse response(IIR ). Thus an fir 

systemhas an impulse response that is zero outside o f some Finite time interval. 

 

StabilityandunstableLinearTime-InvariantSystems: 

We defined an arbitraryrelaxed systemas BIBO stable if and only if its output sequence y(n) 

is bounded for every bounded input x(n). 

Theoutputisboundediftheimpulseresponseofthesystemsatisfiesthecondition 

 

That is,alineartime-invariantsystemisstableif itsimpulseresponseisabsolutely summable 

. 

 

CORRELATIONOFDISCRETE-TIMESIGNALS: 

 

Amathematicaloperationthat closelyresembles convolution is correlation.Just as inthe case 

ofconvolution,two signalsequences are involved incorrelation. correlationbetweenthetwo 

signals is to measure the degreeto which the two signals are similar and thus to extract some 

in formation that depends to a large extent on the application. Correlation o f signals is often 

encountered inradar, sonar, digitalcommunications, geology, ando the rare asin science and 

engineering . 

Let us suppose that we have two signal sequences x( n ) and y(n) that we wish to 

compare. In radar and active sonar applications. x( n ) can represent the sampled version of 

thetransmitted signaland y{n) canrepresent the sampled versionofthe received signalat the 

output of the analog -to -digital (A /D ) converter. If a target is p resent in the space being 

searched by the radar or sonar, the received signal y(n) consists of a delayed version of the 

transmitted signal, reflected from the target. 
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This comparison process is performed by means of the correlation operation of 2 different 

types. 

 

Cross-correlationandAutocorrelationSequences: 

Suppose that we have two real signal sequences x( n ) and y( n) each of which has finite 

energy. T hecross-correlation o fx( n ) and y(n) is a sequence rxy(l), which is defined as 

 

or,equivalently,as 

 

The indexlisthe(time) shift (or lag)parameter andthesubscripts xyonthecross-correlation se 

quencerxy(l), indicate the sequences being correlated .If we reverse the roles of x(n) an d y(n) 

and there fore reverse the order of the indices xy. we obtain the cross-correlation sequence 
 

 

or,equivalently, 
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Bycomparing theabove4 equationsweconcludethat 

 

Hence , ryx(l) provides exactlythe same informationas rxy(l),withrespecttothe similarityof x ( n) 

to y(n). 

 

Example: 

Determinethecross-correlationsequence rxy(l) ofthe sequences 

 

 

Solution: Letususethedefinitionofcross-correlationtocomputerxy(l).ForI=0wehave 

 

Theproduct sequencev0(n)=x(n)y(n)is 

andhence thesumoverall valuesofnis 

 

For I > 0, we simply shift y(n) to the right relative to x(n ) hy l units, compute the product 

sequence vl(n) = x(n)y(n— I), and finally, sumover all valueso fthe product sequence. Thus 

we obtain 
 

 

 

For l< 0, we shifty(n) to the left relative to x(n) by l units, compute the product sequence vl(n) 

= x(n )y(n — I), and sum over all values of the product sequence. Thus we obtain the values 

of the cross-correlation sequence 
 

 

 

 

Therefore,thecross-correlationsequenceofx{n) andy(n)is 

 

 

Thentheconvolutionofx(n)with y(—n)yieldsthecross-correlationrxy(l)that is, 
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Autocorrelation: 

wheny(n) = x(n),wehavetheautocorrelation ofx(n),whichisdefinedasthesequence 

 

or, equivalently, as 
 

 

 

finite-durationsequences, 

 

 

 

 

and 

For 

where 

i =l,k=0 forl>0,andi=0,k=lforl<0. 

 

PropertiesoftheAutocorrelationandCrosscorrelationSequences: 

 

1- Thecross-correlationsequencesatisfiestheconditionthat 

when y(n)=x (n),reducesto 

 

 

2- Thenormalizedautocorrelationsequenceisdefinedas 

Similarly,wedefinethenormalizedcross-correlationsequence 

 

Now\ρxx{l)\<1and\ρxy{l)\<1,andhencethesesequencesare independent ofsignalscaling. 3-the 

cross-correlation sequence satisfies the property 

theautocorrelationsequencesatisfiesthe property 

Hencetheautocorrelationfunctionisanevenfunction. 

MODULE-2 
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TheOne-sidedz-Transform: 

Theone-sided orunilateralz-transformofa signalx(n)isdefinedby 

 

 

…………………………………..(1.1) 

 

Properties: 

 

1. Itdoesnotcontaininformationaboutthesignalx(n)fornegativevaluesof time. 

2. Itisuniqueonlyfor causalsignals. 

3. Theone-sidedz-transform𝑋+(𝑧)ofx(n)isidenticaltothetwo-sidedz-transform of 

the signal x(n)u(n). Shifting Property: 

 

 Timedelay: 

If 

 

 
+ 

𝑧then 𝑥(𝑛−𝑘) ↔𝑧−𝑘[𝑋+(𝑧)+∑𝑘 

] k>0 ……(1.2) 

(−𝑛)𝑧𝑛𝑛=1 

 

 
Incasex(n)isacausalsignal 

 

 

then  k>0 ....................................... (1.3) 

 

 Timeadvance: 

 

 

k>0. ............................ (1.4) 

 

FinalValueTheorem: 

 

 

If 

then 
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𝑘=1𝑘 𝑘=0𝑘 

Thelimitexists iftheROCof(𝑧−1)+(𝑧)includestheunitcircle. 

AnalysisofLTISysteminz-domain: 

 

ResponseofSystemswith RationalSystem: 

 

Weconsideralinearconstantcoefficientdifferenceequation: 

 

 

(𝑛)=−∑𝑁 𝑎𝑦(𝑛−𝑘)+∑𝑀 𝑏𝑥(𝑛−𝑘) ………………………. 

(2.1) 

 

correspondingsystemfunctionH(z)isgivenby 

 

 

…………………………………………..(2.2) 

weapplyaninput signalx(n)whosez-transformisX(z).For and zero 

initial conditions, the z-transform of the output of the system has the form 

……………………………….... (2.3) 

Supposethesystemcontainssimple poles 𝑝1,𝑝2,… … …,𝑝𝑁andX(z)containspoles 

𝑞1,𝑞2,………,𝑞𝐿,where𝑝𝑘≠𝑞𝑚forallk=1,2,……,Nandm =1,2,…….,L. Assuming no pole-zero 

cancellation the partial fraction expansion ofY(z) yields 
 

 

TheinversetransformofY(z)istheoutputsignaly(n)fromthe system: 

 

 

…………………... 

(2.5) 

 

wherescalefactors{Ak}and{Qk}arefunctionsofbothsetsofpoles{pk}and {qk}. 

 

ResponseofPole-ZeroSystemswithNon-zeroInitialConditions: 

 

Weconsidertheinputsignalx(n)tobeacausalsignalappliedatn=0.Theeffectsofall 

previousinputsignalstothesystemarereflectedintheinitialconditionsy(-1),y(-2), .......................... , 

y(-N).Weareinterestedindeterminingtheoutputy(n)for𝑛≥0. 

 
𝑁 𝑘 𝑀 

𝑌+(𝑧)=−∑𝑎𝑘𝑧−𝑘[𝑌+(𝑧) +∑𝑦(−𝑛)𝑧𝑛]+∑ 𝑏𝑘𝑧−𝑘𝑋+(𝑧) 
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CausalityandStability: 

𝑘=1 𝑛=1 𝑘=0 

 
A causallineartimeinvariantsystemisonewhoseunitsampleresponseh(n)satisfiesthe condition 

 

h(n) = 0 n<0 

 

AnLTIsystemiscausalifandonlyiftheROCofthesystemfunctionistheexteriorofa circle of radius 𝑟 < 
∞, including the point 𝑧 = ∞. 

Anecessaryandsufficient conditionforanLTIsystemtobeBIBOstable is 

 

 

An LTI systemisBIBO stable ifand only ifthe ROCofthe systemfunction includesthe unit circle. 

Consequently,acausalandstablesystemmusthaveasystemfunctionthatconvergesfor|𝑧| 

>𝑟<1.Since the ROC cannot contain any poles of H(z) , it follows that a causal linear time- 

invariant system is BIBO stable if and only if all the poles of H(z) are inside the unit circle. 

The DFT as a Linear Transformation: 

 

The formulasfortheDFTandIDFTmaybeexpressedas 

 

 

𝑁 , 𝑘=0,1,….,𝑁−1 ........................................ (3.1) 
 
 
 
 
 

 

 
where 

 

whichis anNthrootofunity. 

 

Thecomputationofeachpoint oftheDFTcanbe accomplished byNcomplex multiplications and 

(N-1)complexadditions. Hence the N-point DFT values canbe computed inatotalofN2c 



25|Page  

omplexmultiplicationsandN(N-1)complexadditions. 

LetusdefineanN-pointvectorxNofthesignalsequencex(n),n=0,1,…,N-1,anN-point vector XN of 

frequency samples, and an 𝑁 × 𝑁 matrix 𝑾𝑁as 

 

Withthesedefinitions,theN-pointDFTmaybeexpressedinthematrixformas 

 

 

where is the matrix of the linear transformation. is a symmetric matrix. If we assume 

that the inverse of exists, then we also write 

IDFTcanalsobeexpressedas 

 

 

where denotesthecomplexconjugateofthe matrix .Comparisonofequations3.5and 

3.6leadsustoconcludethat 

 

 

whichinturnimplies 
 

 

where isa identitymatrix. 

 

 

 

 

CircularConvolution: 

 

Supposethatwehavetwofinite-durationsequencesoflengthN, and .Their respective N 

point DFTs are 
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MultiplyingtheabovetwoDFTswe get: 

 

IDFTof{ }is 

 

Substitutingfor and in(4.3)usingDFTsgivenin(4.1)and(4.2),weobtain 

  

 

 

 

Theinner suminthebracketsin(4.4) hastheform 
 

 

wh 

 

ere isdefinedas 

 

Consequently, 
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Ifwesubstitutetheresultin(4.6)into(4.4),weobtain 

 

 

The above convolution sum is called circular convolution. Thus we conclude that 

multiplicationof the DFTsof two sequencesis equivalent to the circular convolution of the t 
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LinearFilteringMethodsBasedontheDFT: 

 

UseoftheDFTinLinearFiltering: 

 

Suppose we have a finite-duration sequence x(n) of length L which excites an FIR filter of 

length M. Let 

where istheimpulseresponseoftheFIRfilter. The 

output sequence of the FIR filter: 

 

 

 

The duration of is  

 

Thefrequency-domainequivalentto(5.1)is 
 

 

If the sequence is to be represented uniquely in the frequency domain by samples of its 

spectrum at a set of discrete frequencies, the number of distinct samples must equal or 

exceed Therefore, a DFT of size is required to represent {y(n)} in 

the frequency domain. 

 

 

 

 

Nowif 

 

 

then 

 

 

where and are the N-point DFTs of the corresponding sequences x(n) and h(n), 

respectively. Since the sequences x(n) and h(n) have a duration less than N, we simply pad 

these sequences with zeros to increase their length to N. 

Since the ( )-point DFT of the output sequence y(n) is sufficient to represent 

y(n) inthe frequencydomain, it follows that the multiplicationofthe N-point DFTs X(k) and H 
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(k)followedbythecomputationoftheN-pointIDFT,mustyieldsequence{y(n)}. 

Thus, the N-point circular convolution of x(n) with h(n) must be equivalent to the linear 

convolution of x(n) with h(n). Thus with zero padding, the DFT can be used to performlinear 

filtering. Filtering of Long Data Sequences: 

 

LettheFIRfilterhasdurationM.TheinputdatasequenceissegmentedintoblocksofL points, where , by 

assumption, . Overlap-save method: 

 

Sizeofinputdatablocks, DFTs 

and IDFTs are of length . 

Eachdatablock consists ofthe last data pointsofthe previous data block followed by 

new data points to form a data sequence of length . An -point DFT is 

computed for each data block. 

The impulse response ofthe FIR filter is increased in length by appending zeros and an 

-point DFT of the sequence is computed once and stored. The multiplication of the two - 

point DFTs { } and { } for the mth block of data yields 

 

 

 

 

 

ThentheN-pointIDFTyieldsthe result 

 

 

 

Since the data record is of length , the first  points of are corrupted byaliasing 

and must be discarded. The last points of are exactly same as the result from linear 

convolution and, as a consequence, 
 

 

 

To avoid loss of data due to aliasing, the last points of each data record are saved and 

these points become the first points ofthe subsequent record. To begin the processing, 

the first points of the first record are set to zero. Thus blocks of data sequences are: 
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◻ 

 

Inputsig 
 

 

Outputsignal 
 

 

 

 

 

 

 y1(n) 

DiscardM-1 points 
 

 

DiscardM-1 points 

 

 

DiscardM-1points (Linear 

FIR filtering by the overlap-save method) 

Overlap-addmethod: 

nal L L L 

    

 

 
y3(n) 

 

M-1 

M-1 zeros L 

x3(n) 

x2(n) 

x1(n) 

y2(n) 
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Size of input block =  

 

SizeoftheDFTsandIDFTis . 

 

To each data block we append zeros and compute the -point DFT. The data blocks 

may be represented as 

 

 

 

 

 

 

 

 

 

 

 

 

andso on.Thetwo -pointDFTsaremultipliedtogethertoform 

 

 

 

 

The IDFT yields data blocks of length that are free of aliasing, since the size of the DFTs 

and IDFT is and the sequences are increased to -points by appending zeros 

to each block. 

Since each data block is terminated with M-1 zeros , the last M-1 points from each output 

block must be overlapped and added to the first M-1 points of the succeeding block. Hence 

this method is called the overlap-add method. The output sequence is: 
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Inputdata L L L 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output data 
 

 

 

M-1 pointsaddtogether y2(n) 
 

 

 
pointsaddtogether y3(n) 

 

 
(LinearFIRfilteringbytheoverlap-addmethod) 

 

 

TheDiscreteCosineTransform: 

 

ForwardDCT: 

 

LetanN-pointsequencex(n)whichisrealandeven, thatis, 

 

(𝑛) =𝑥(𝑁−𝑛),0≤𝑛≤𝑁−1 

 
Let s(n) bea2N-pointevensymmetricextensionofx(n)definedby 

M-1zeros 

M-1 zeros 

x3(n) 

x2(n) 

x1(n) 

y1(n) 
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TheDCT of x(n)can becomputedby takingthe2N-pointDFT of s(n)andmultiplyingthe result by 

. The forward DCT is defined by 

 

 

InverseDCT 

 

 

DCTasan OrthogonalTransform 

The DCTmatrix ofthesequence isarealorthogonalmatrix, that is, it 

satisfies 

 

 

Orthogonality simplifies the computation of the inverse transform because it replaces matrix 

inversion by matrix transposition. Circular Correlation : 

 

If x(n) and y(n) are two periodic sequences, each with period N, then their cross 

correlationsequence is defined as 

 

Module-III 

FastFourierTransformAlgorithms: 

1. Introduction 

 

For afinite-durationsequencex(n)oflengthN,theDFTsummaybewritten as 
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𝑁 

𝑁 

Where 𝑊𝑁=𝑒−𝑗2𝜋/𝑁. There are a total of N values of X(.) ranging from X(0) to X(N–1). The 

calculationofX(0) involvesno multiplicationsat allsinceeveryproductterminvolves 𝑊𝑁0=𝑒−𝑗0 

=1. Further, the first term in the sum always involves 𝑊0or 𝑒−𝑗0=1and therefore does not require a 

multiplication. Each X(.) calculation other than X(0) thus involves (N-1) complex multiplications. 

And each X(.) involves (N–1) complex additions. Since there are N values of X(.) 

theoverallDFTrequires(N-1)2complexmultiplicationsand N(N-1)complexadditions.Forlarge N we 

mayround these off to N2 complex multiplications and the same number ofcomplex additions. 

Eachcomplexmultiplication isoftheform 

 

(A+jB)(C+jD) = (AC–BD)+j(BC+AD) 

 

and therefore requires four real multiplications and two realadditions. Each complex addition is of 

the form 

(A+jB)+(C+jD)=(A+C)+j(B+D) 

 

and requires two real additions. Thus the computation of all N values of the DFT requires 4N2 real 

multiplicationsand4N2 (=2N2+2N2)realadditions. Efficient algorithmswhichreducethenumber of 

multiply-and-add operations are known by the name of fast Fourier transform (FFT). The 

Cooley-Tukey and Sande-Tukey FFT algorithms exploit the following properties of the twiddle 

factor(phase factor), 𝑊𝑁= 𝑒−𝑗2𝜋/(the factor 𝑒−𝑗2𝜋/𝑁is called the Nth principal root of 1): 

1. Symmetry property  

2. Periodicity property  

 

Toillustrate,forthecaseofN=8,thesepropertiesresultinthe following relations: 

Theuseofthesepropertiesreducesthenumber ofcomplexmultiplicationsfromN  

(actuallythenumberofmultiplicationsislessthanthisbecauseseveralofthemultiplicationsby 

𝑊𝑟are really multiplications by ±1 or ±j and don’t count); and the number of complex additionsare 

reduced from N 2to N log2𝑁. Thus, with each complex multiplication requiring four real 

multiplications and two real additions and each complex addition requiring two real additions, the 

computation of all N values of the DFT requires 

Number of real multiplications 

Numberofrealadditions  

WecangetaroughcomparisonofthespeedadvantageofanFFToveraDFTbycomputingthe 
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numberofmultiplications foreachsincetheseare usuallymoretimeconsumingthanadditions. For 

instance, for N =8theDFT,usingtheabove formula,would need82=64complexmultiplications, but the 

radix-2 FFT requires only . 

 

 

We consider first the case where the length N of the sequence is an integral power of 2, that is, 

N=2νwhere ν is an integer. These are called radix-2 algorithms of which the decimation-in-time 

(DIT) version is also known as the Cooley-Tukey algorithm and the decimation-in-frequency 

(DIF) version is also known as the Sande-Tukey algorithm. We show first how the algorithms 

work; their derivation is given later. For a radix of (r = 2), the elementary computation (EC) 

known as the butterfly consists of a single complex multiplication and two complex additions. 

Ifthe number ofpoints, N, can be expressed as N = r m, and ifthe computation algorithm is carried 

out by means of a succession of r-point transforms, the resultant FFT is called a radixralgorithm. 

In a radix-r FFT, an elementary computation consists of an r-point DFT followed by the 

multiplication of the r results bythe appropriate twiddle factor. The number of ECs required is 

 

whichdecreasesasrincreases.Ofcourse,thecomplexityofanECincreaseswithincreasingr.For 

r=4,the ECrequiresthreecomplexmultiplicationsand severalcomplexadditions. 

 

SupposethatwedesireanN-point DFTwhereNisacompositenumberthat canbe factored into 

the product of integers 

N= N1N2…Nm 

If, for instance, N = 64 and m = 3, we might factor N into the product 64 = 4 x 4 x 4, and the 64- 

point transform can be viewed as a three-dimensional 4 x 4 x 4 transform. If Nis a prime numberso 

that factorization of N is not possible, the original signal can be zero-padded and the resulting new 

composite number of points can be factored. 

2. Radix-2decimation-in-timeFFT(Cooley-Tukey) 

 

Procedureandimportantpoints 

 
1. Thenumber ofinputsamples is N= 2νwhereνisan integer. 

2. The input sequence is shuffled through bit-reversal. The index n of the sequence x(n) 

isexpressed in binary and then reversed. 

3. Thenumberofstagesintheflow graph isgivenbyν=log2𝑁. 

4. EachstageconsistsofN/2butterflies. 

5. Inputs/outputsforeachbutterflyareseparatedasfollows: 

Separation=2m-1sampleswherem=stageindex,stagesbeingnumberedfromleftto 
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right(thatis,m=1forstage1,m=2forstage2etc.).Thisamountstoseparation increasing from left 

to right in the order 1, 2, 4… N/2. 
 

 

 

6. Thenumberofcomplexadditions=𝑁log2𝑁and thenumber ofcomplex multiplications 

. 

7. The elementarycomputation block in the flow graph, called the butterfly, is shown here. 

This is an in-place calculation in that the outputs (A – B can be 

computed and stored in the same locations as A and B. 

 

Example1Radix-2,8-point,decimation-in-time FFTforthesequence 

 

 

n→01234567x(n)= {1,234–4–3–2–1} 

 

Oneofthe elementarycomputationsisshown below: 

 

Thesignalflowgraph follows: 
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𝑁 

 

 

TheDFT is 

 

X(k)={0,(5– j12.07),(–4 +j4),(5– j2.07),–4,(5 +j2.07),(–4–j4),(5 +j12.07)} 

3. Radix-2decimation-in-frequencyFFT(Sande-Tukey) 

 

Procedureandimportantpoints 

 
1. Thenumber ofinputsamples is N= 2νwhereνisan integer. 

2. The inputsequenceisinnaturalorder;theoutputisinbit-reversed order. 

3. Thenumberofstagesintheflow graph isgivenbyν=log2𝑁. 

4. EachstageconsistsofN/2butterflies. 

5. Inputs/outputs for each butterfly are separated in the reverse order from that of the DIT. 

The separation decreases from left to right in the order N/2, … , 4, 2, 1. 

6. Thenumberofcomplexadditions= Nlog2𝑁andthenumberofcomplexmultiplications is 

. 

7. ThebasiccomputationblockintheflowgraphoftheDIFFFTisthebutterflyshown here. 

Thisisanin-placecalculationin thatthe twooutputs (A +B)and(A– B)𝑊𝑘can be computed and 

stored in the same locations as A and B. 

 

 

 

 

Example2:Radix-2,8-point,decimation-in-frequencyFFTforthesequence 
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n→01234567 

 

x(n)= {1,234–4–3–2–1} 

 

Solution: 

 

ThetwiddlefactorsarethesameasintheDITFFTdoneearlier (bothbeing8-pointDFTs): 

 

 

Oneofthe elementarycomputationsisshown below: 

 

Thesignalflowgraph follows: 
 

 

 

 

TheDFT is 
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X(k)={0,(5– j12.07),(–4 +j4),(5– j2.07),–4,(5 +j2.07),(–4–j4),(5 +j12.07)} 

 

 

(DITTemplate) 

 

Theelementarycomputation(Butterfly): 
 

 

 

 

 

 

Thesignalflow graph: 

 

 

 

 

 

 

(DIFTemplate) 

 

Theelementarycomputation(Butterfly): 
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Thesignalflow graph: 

 

16-pointDIFFFT 
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𝑁 

 

4. InverseDFTusingtheFFTalgorithm 
 

TheinverseDFTofanN-pointsequence{X(k),k=1,2,…,(N–1)}isdefined as 

 

 

 

𝑛=0,1,…,𝑁−1 

 
Where𝑊𝑁=𝑒−𝑗2𝜋/𝑁.Takethecomplexconjugateofx(n)andmultiplybyNtoget 

 
𝑁−1 

𝑁𝑥∗(𝑛)=∑𝑋∗(𝑘)𝑊𝑘𝑛 

𝑘=0 

 

The right hand side of the above equation is simply the DFT of the sequence 𝑋∗(𝑘)and can be 

computed by using any FFT algorithm. The desired output sequence is then found by taking the 

conjugate of the result and dividing by N 
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Example3:GiventheDFTsequenceX(k)={0,(–1–j),j,(2+j),0,(2–j),–j,(–1+j)}obtainthe IDFT x(n) using 

the DIF FFT algorithm. 

 

Solution: 

 

 

Thisisan8-pointIDFT.The8-pointtwiddle factorsare,ascalculatedearlier, 

 

 

 

 

Theelementarycomputation(Butterfly)isshownbelow: 
 

 

 

Thesignalflowgraph follows: 
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Theoutputatstage3givesusthevalues{8𝑥∗(𝑛)}inbit-reversedorder: 

 

{8𝑥∗(𝑛)}𝑏𝑖𝑡𝑟𝑒𝑣𝑜𝑟𝑑𝑒𝑟={2,–2,4,–4,–6.24,2.24,6.24,–2.24} 

 

TheIDFTisgivenbyarrangingthedatainnormalorder,takingthecomplexconjugateofthe sequence and 

dividing by 8: 

 

{8𝑥∗(𝑛)}𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑟𝑑𝑒𝑟={2,–6.24, 4,6.24, –2, 2.24,–4, –2.24} 

 

( ){ } 
Example 4:GiventheDFTsequence X(k) ={0,(1–j), j, (2+j), 0, (2–j), (–1+j),–j},obtaintheIDFT 

x(n) usingtheDIFFFTalgorithm. 

 

Solution: 

Thereisnoconjugatesymmetryin{X(k)}.UsingMATLAB X = 

[0, 1-1j, 1j, 2+1j, 0, 2-1j, -1+1j, -1j] 

x=ifft(X) 

 

TheIDFT is 

 

x(n)={0.5,(-0.44+0.037i),(0.375-0.125i),(0.088 +0.14i),(-0.75+0.5i),(0.44+0.21i),(-0.125 

-0.375i),(-0.088-0.39i)} 

5. APPLICATIONSOFFFTALGORITHMS: 

 

1. EfficientComputationoftheDFTofTwoRealSequences 
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The FFT algorithm is designed to perform complex multiplications and additions, even though the 

input data may be real valued. The basic reason for this situation is that the phase factors are 

complexand hence, afterthefirst stageofthealgorithm, all variablesarebasicallycomplex-valued. In 

view of the fact that the algorithm can handle complex -valued input sequences, we can exploit 

thiscapabilityinthe computationofthe DFToftwo real-valuedsequences.Supposethat𝑥1(𝑛)and 

𝑥2(𝑛)are two real-valued sequences of length N, and let x(n) be a complex-valued sequence defined 

as 

 

(𝑛) = 𝑥1(𝑛) +𝑗𝑥2(𝑛) 0≤𝑛≤𝑁−1 

 
TheDFToperationis linearandhencetheDFTofx(n)canbeexpressedas 

 

(𝑘) =𝑋1(𝑘) + 𝑗𝑋2(𝑘) 

 
Thesequences𝑥1(𝑛)and𝑥2(𝑛)canbeexpressedin termsofx(n) asfollows: 

 

 

HencetheDFTsof𝑥1(𝑛)and𝑥2(𝑛)are 

 

RecallthattheDFTof𝑥∗(𝑛) is 𝑋∗(𝑁 −𝑘).Therefore 

 

 

Thus, by performing a single DFT on the complex-valued sequence x(n), we have obtained theDFT 

ofthe two realsequences with only a smallamount ofadditional computation that is involved in 

computing 𝑋1(𝑘) and 𝑋2(𝑘)from X(k). 

2. EfficientComputationoftheDFTofa2N-PointRealSequence 

 

Suppose that g(n) is a real-valued sequence of 2N points. We now demonstrate how to obtain the 

2N-point DFTofg(n) fromcomputationofone N-point DFT involving complex-valued data. First, we 

define 
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2 

2 

𝑥1(𝑛) = 𝑔(2𝑛) 

 
𝑥2(𝑛)=𝑔(2𝑛 +1) 

 
Thus we have subdivided the 2N-point realsequence into two N-point realsequences. Now we can apply 

the method described in the preceding section. 

Let x(n)betheN-point complex-valuedsequence 

 

 

(𝑛) =𝑥1(𝑛)+𝑗𝑥2(𝑛) 

 
Fromtheresultsofthepreceding section,wehave 

 

Finally,wemust expressthe2N-point DFTintermsofthetwoN-point DFTs,𝑋1(𝑘)and𝑋2(𝑘).To accomplish 

this, we proceed as in the decimation-in-time FFT algorithm, namely, 

 
𝑁−1 𝑁−1 

(𝑘)=∑𝑔(2𝑛)𝑊2𝑛𝑘+∑𝑔(2𝑛+ 1)𝑊(2𝑛+1)𝑘 

2𝑁 2𝑁 

𝑛=0 𝑛=0 
 
 

𝑁−1 𝑁−1 

=∑𝑥1(𝑛)𝑊𝑛𝑘+𝑊𝑘∑𝑥2(𝑛)𝑊𝑛𝑘 
𝑁 2𝑁 𝑁 

𝑛=0 𝑛=0 

 

Consequently, 

 

(𝑘) =𝑋1(𝑘) +𝑊𝑘𝑁𝑋2(𝑘) 𝑘=0,1,….,𝑁−1(𝑘+ 
 

𝑁)=𝑋1(𝑘) −𝑊𝑘𝑁𝑋2(𝑘) 𝑘=0,1,….,𝑁−1 
 
 

 
ThuswehavecomputedtheDFTofa2N-pointrealsequencefromoneN-pointDFTandsome additional 

computation. 

6. TheChirp-zTransformAlgorithm: 
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TheDFTofanN-point datasequencex(n) hasbeenviewedasthez-transformof𝑥1(𝑛)evaluatedat N 

equally spaced points on the unit circle. It has also been viewed as N equally spaced samples of the 

Fourier transform of the data sequencex(n). In this section we consider the evaluation of X(z)on 

other contours in the z-plane, including the unit circle. 

Supposethatwewishtocomputethevaluesofthe z-transformofx(n)ata setofpoints{zk}.Then, 

 

 

 

𝑘=0,1,…,𝐿−1 

 
For example,ifthecontourisacircleofradiusr and thezkareNequallyspaced points,then 

 

𝑧𝑘=𝑟𝑒𝑗2𝜋𝑘𝑛/𝑁 𝑘 =0,1,2,…, 𝑁−1 

 
𝑁−1 

(zk)=∑[𝑥(𝑛)𝑟−𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁 𝑘 =0,1,2,…, 𝑁−1 
𝑛=0 

 

InthiscasetheFFTalgorithmcanbeappliedonthemodifiedsequence(𝑛)𝑟−𝑛. 

Moregenerally, supposethatthepointszkinthez-planefallonanarcwhichbeginsat 

somepoint 

 

z0= r0𝑒𝑗𝛳0 

 

and spirals either intowardtheoriginor out awayfromthe origin suchthatthe points zkare defined as 

𝑘zk=r0𝑒𝑗𝛳0(R0𝑒𝑗𝜙0) 𝑘=0,1,…, 𝐿−1 

Note that if R0 < 1, the points fall on a contour that spirals toward the origin and if R0 > 1, the 

contour spirals away from the origin.If Ro= 1, the contour is a circular arc of radius r0. If r0 = 1 and 

R0= l, the contouris anarc ofthe unit circle. The lattercontour would allow us to computethe 

frequency content of the sequence x(n) at a dense set of L frequencies in the range covered by the 

arc without having to compute a large DFT, that is, a DFT ofthe sequence x(n) padded with many 

zeros to obtain the desired resolution in frequency. Finally, if r0 = R0 = 1, = 0, ϴ0 = 0, ϕ0 = 2n / N, 

and L= N, the contour is the entire unit circle and the frequencies are those ofthe DFT. 
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𝑘 

 
 

 

 

Whenpoints{zk} aresubstituted intotheexpression fortheztransform,we obtain 

 

 
𝑁−1 

(zk) =∑𝑥(𝑛)𝑧−𝑛 
𝑛=0 

 

 
𝑁−1 

−𝑛 

=∑(𝑛)(r0𝑒𝑗𝛳0) 𝑉−𝑛𝑘𝑛=0 
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where, bydefinition,𝑉=R0𝑒𝑗𝜙0 

 
Wecanexpresstheaboveequationintheformofaconvolution,bynotingthat 

 

 

Letusdefineanewsequenceg(n) as 

0−𝑛 2/2 

(𝑛)=𝑥(𝑛)(r0𝑒𝑗𝛳) 𝑉−𝑛 

 
 
 

 

Then, 
 

 

𝑁−1 

(zk)=𝑉−𝑘2/2∑𝑔(𝑛)𝑉(𝑘−𝑛)2/2 

𝑛=0 

 
The summation in the above expression can be interpreted as the convolution of the sequence g(n) 

with the impulse response h(n) of a filter, where 

 

ℎ(𝑛)= 𝑉𝑛2/2 

 
 

 
Hence, 

 

 

Wherey(k)istheoutputofthefilter 

 
𝑁−1 

(𝑘) =∑𝑔(𝑛)ℎ(𝑘−𝑛) 𝑘=0,1,…,𝐿−1 
𝑛=0 

 

We observe that both h(n) and g(n) are complex-valued sequences. The sequence h(n) with R0 = 1 

hastheform of acomplex exponentialwith argument𝑤𝑛=𝑛2𝜙0/2=(𝑛𝜙0/2)𝑛.Thequantity 

𝑛𝜙0/2represents the frequency of the complex exponential signal, which increases linearly with 

time. Such signals are used in radar systems and are called chirp signals. Hence the z-transform 

evaluated is called the chirp-z transform. 

MODULE 4: 
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StructuresforFIRandIIRSystems: 

StructureforFIRSystems: 

IngeneralaFIRsystemisdescribedbythedifferenceequation 
 

 

 

M1 

 

y(n) bkx(n k) 

k0 

 

Orequivalently,bythesystemfunction 
 

 

M 1 

 

 

H(z) k0bkzk 

 

1. Direct-FormStructure: 

 

Thedirect-formrealizationfollowstheconvolutionsummation 

 

 

 

 

 

 

DirectformrealisationofFIRsystem 

We observe that this structure requires M-1 memory locations for storing the M-1 

previous inputs, and has a complexity of M multiplications and M-1 additions per 

output point. Since the output consists of a weighted linear combination of M-1 past 

values ofthe input and the weighted current value of the input, the structure inabove 

figure, resembles a tapped delay line or a transversalsystemconsequently, the direct- 

form realization is often called a transversal or tapped-delay-line filter. 
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Hk 

k1 

2. Cascade-FormStructures: 

Thecascaderealizationfollowsnaturallyfromthesystemfunctiongivenby 

 

Itissimple mattertofactorH(z)intosecondorderFIRsystemsothat 

M 

 

H(z) (z) 

 

 

WhereHk(z)=bk0+bk1z
-1+bk2z

-2,k=1,2,3 .................... k 

And K is the integer part of (M + l) /2. The filter parameter b0 may be equally 

distributed among the K filter sections, such that or it may be 

assigned to asingle filter section. The zeros ofH( z) aregrouped inpairs to produce the 

second-order FIR systems. It is always desirable to form pairs of complex- conjugate 

roots so that the coefficients {bki} are real valued. On the other hand, real- valued 

roots can be paired in any arbitrary manner. The cascade-form realization along with 

the basic second-order section is shown below. 

 

CascadeRealisationofaFIRsystem 

DesignofDigitalFilters: 

CausalityandItsImplications: 

Letusconsidertheissueofcausalityinmoredetailbyexaminingtheimpulseres 
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ponseh(n)ofanideallowpassfilterwithfrequencyresponsecharacteristic 

 

1 

H(w)={ 

0 

Theimpulseresponseofthe filteris 

 

 
 

 

 

h(n)={ csin cn,n 0 
 

 

 

 

 

 

 

Unitsampleresponse ofanideallowpassfilter 

Aplot of h{n) for wc = π/ 4 is illustrated in the above figure. It is clear that the ideal 

low pass filter is noncausal and hence it cannot be realized in practice. 

One possible solution is to introduce a large delay n0 in h(n) and arbitrarily to set 

h(n)=0 for n < n0. However, the resulting system no longer has an ideal frequency 

responsecharacteristic.Indeed,ifweseth(n)=0forn<n0,theFourierseries 

c,n 0 

c 

c 

cn 
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expansionofH(w)results intheGibbsphenomenon. 

 

Paley-WienerTheorem: 

Ifh(n)hasfiniteenergyandh(n)=0for n<0,then 

 

 

Conversely, if |H(ω)| is square integrable and if the integral in the above equation is 

finite, then we can associate with |H(ω)| a phase response , so that the resulting 

filter with frequency response H(ω)=│H(ω)│ejθ(ω) is causal. 

One important conclusion that we draw from the Paley-Wiener theorem is that the 

magnitude function |H(ω)| can be zero at some frequencies, but it can’t be zero over 

anyfinite bandoffrequencies, since the integralthen becomes infinite. Consequently 

any ideal filter is noncausal. 

Apparently causalty imposes some tight constraints on a linear time invariant 

system. In addition to the Paley-Wiener condition causalty also implies a strong 

relation between HR(ω) and HI(ω), the real and imaginary components of the 

frequency response H(ω).To illustrate this dependence we decompose h(n).That 

iseven and an odd sequence, that is 
 

 

 H(n)=he(n)+ho(n) 

1 
Wherehe(n)= 

1 

[h(n)+h(-n)]and 

 

[h(n)-h(-n)] 

2 2  

 

Now, if h(n) is causal ,it is possible to recover h(n) from its even part he(n) for 

0≤n≤∞or fromitsoddcomponentho(n) for1≤n≤∞.Indeed, itcanbeeasilyseenthat 

h(n)=2he(n)u(n)-he(0)δ(n) n≥0 

 

and 

h(n)=2ho(n)u(n)-ho(0)δ(n) n≥1 

 

Sinceh0(n)=0forn=0, wecannotrecoverh(0)fromh0(n)andhencewealsomust 
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know h(0). Inanycase, it is apparent that h0 (n) = he(n) for n> 1, so there is a strong 

relationship between h0 (n) and he(n). 

If h (n) is absolutely summable (i.e., BIBO stable), the frequency response H(w) 

exists, and 

 

In addition, if h(n) is real valued and causal, the symmetry properties of the Fourier 

transform imply that 

 

Since h(n) is completely specified by he(n), it follows that H(ω) is completely 

determined if we know HR(ω).alternatively H(ω) is completely determined from 

HI(ω) and h(0).In short HR(ω) and HI(ω) are independent and cannot be specified 

independently if the system is causal. Equivalently the magnitude and phase 

responses of a causal filter are interdependent and hence cannot be specified 

independently. 

DesignofLinearPhaseFIRfiltersusingdifferentwindows: 

In many cases a linear phase characteristics is required through the passband of the 

filter. It can be shown that causal IIR filter cannot produce a linear phase 

characteristicsandonlyspecialformsofcausalFIRfilterscangivelinearphase.If 

{h[n]} represents the impulse response of a discrete time linear system a necessary 

and sufficient condition for linear phase is that {h[n]} have finite duration N, that it 

be symmetric about its midpoint, i.e. 



55|Page  

 

For N evenwe get a non-integer delay, whichwillcause the value ofthe sequence to 

change. 

OneapproachtodesignFIR filterslinearphaseisto usewindows.Theeasiestwayto obtain FIR 

filter is to simply truncate the impulse response of an IIR filter. If 

{hd[n]}istheimpulseresponseofthedesignedFIR filterthenthe firfilterwith impulse 

response {h[n]} can be obtained as follows. 

H[n]={hd[n],N1nN2 

0,otherwise 

 

This canbethoughtofas beingformedbyaproductof{hd[n]}andawindow 

function {w[n]} {h[n]}= {hd[n]} {w[n]} where {w[n]} is the window 

function. 

Usingmodulationpropertyoffouriertransform 

 

 

1 jω)-w(ejω)] 

H(ejω)=  [Hd(e 

2 

In general for smaller N values spreading of main lobe more, and for larger N 

narrowerthr mainlobeand│H(ejω)│comescloserto│Hd(e
jω)│.Muchwork has been 

done on adjusting {w[n]} to satisfy certain main lobe and side lobe 

req 
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4n 

n N 1 

1) 

uirements.Someofthecommonlyusedwindowsaregivenbelow- 

(a) RectangularWindow 

 

WR(n)={1,0 n N 1 

0,otherwise 

 

(b) Bartlett(Triangular) 

 

2n 

 ,0 n (N 1)/2 

N 

WB(n)={2 2n,(N 1)/2 N 

1 

0,elsewhere 

(c) HanningWindow 
 

 

1 cos[2n/(N 1)] 

WHan(n)={2,0 0,otherwise 

 

(d) BlackmanWindow 
 

 

 

W(n)={.42 .5cos 

Bl0,otherwise 

 

(e) KaiserWindow 

N 1 .08cos N 

 

 

N 

 

WK(n)={I0a 2  n  2 ,0 

 

I0 wa(N  

2  
0,otherwise 

 

Where I0(x) is the modified Zero Order Bessel Function of the first kind. 

TheTransitionwidthandthe minimumstoppedattenuationfordifferentwindows 

1 

n N 1 

 

2n 

 

1 ,0 n N 1 

N 1 2 1 212 

n N 1 
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arelistedbelow- 

 

 

We first choose a window that satisfies the minimum attenuation and the 

bandwidth that allows us to choose the appropriate value of N.Actual frequency 

responsecharacteristicsarethencalculatedandwechecktherequirments aremet or not 

DesignofIIR Filters: 

Therearetwomethods fordesigntheIIRfilter. 

1. ImpulseInvariantMethod 

2. BilinearTransformationMethod 

1. Filterdesignbyimpulseinvariance: 

Here the impulse response h[n] of the desire discrete time system is proportional 

to 

equallyspacessamplesofthecontinuoustimefilteri.e, 

H[n]=Tdha(nTd) 

WhereTdrepresentsasampleinterval.Sincethespecificationofthefilterare 

given in discrete time domain it turns out that Td has no role to play in design of 

the filter. From the sampling theorem the frequency response of the discrete time 

filter is given by 

H(ejω)= H(jj2k) 

a 

k  Td Td 

Since anypracticalcontinuous time filter is not strictlyband limited there is some 

aliasing. However if the continuous time filter approaches zero at high frequency 

the aliasing may be negligible. Then the frequency response of the discrete time 

filter is 
 

 

H(ejω)≈k -Ha(jTd),│ω│≤πTypeequation here. 

We first convert digital filter specifications to continuous time filter 
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s 

e 

1 z1 

specifications.NeglectingaliasingwegetHa(jΩ)specificationbyapplyingthe relation Ω= 

ω/Td. Where Ha(jΩ) is transferred to the designed filter H(z). 

Letusassumethatthepolesofthecontinuoustimefilteraresimple, 

thenH(s)= N Aka 

k1s k 

 

ThecorrespondingImpulseresponseish(t)={ NAeskt
,t 0 

a k1k 
 

 

Thenh[n]=Tdha(nTd)= NTdAesknTdu[n] 

k 

 

 

k1 

 

N Td Ak 

Thesystemfunctionfunctionforthisis H(z)= skTd 1 

k11 z 

Weseethatapoleats=skinthes-plane istransferredtoapoleatz= eskTdinthez- plane. If 

the continuous time filter is stable i.e Re{sk}<0, then the magnitude of eskTdwill 

be less than 1.So the pole will be inside the unit circle. Thus the causal discrete 

filter is stable. The mapping of zero is not so straight forward. 

BilinearTransformation: 

This technique avoids the problem of aliasing by mapping jΩ axis in the s-planeto 

one revolution of unit circle in the z-plane. If Ha(s) is the continuous time transfer 

functionthe discrete time transfer functionis detained byreplacings with 2 

S= 

 

 

Fromwhichwegetz=1 

Td 

 

/2 

 
 

1 (Td/2)s 

 

1 

Substitutings= +jΩ,wegetz 

Tdj Td 

1 T
2 

dj d T
2 

1 

1z 

Td s 

0,t 0 
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// 

2 2 

If<0, it is then magnitude ofthe realpart inthe denominator is more thanthat of the 

numerator and so │z│<1. Similarly if>0 then│z│>1 for all Ω.Thus pole in 

thelefthalfofthes-planewillgetmappedtothepolesinsidetheunitcircleinz- 

plane.If=0then 

1 

 

z  2 

 

1j 2Tdso│z│=1,writingz=ej weget 

 

 

2 

 

Rearrangingwegetj2Td eejj 11 eejj 22((ee 
 

22 22)) j 

 cossin 22 
 

 

Or 2tan /2or 2tan1 
Td . 

Td 2 

jTd 

// jj // eejj // 

1j Tde 

j=1j 
2
Td 
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