C.V. RAMAN POLYTECHNIC BBSR

Discipline: Diploma Branch: CSE	Semester: 3 rd	Name of the Teaching Faculty: Ipsita Ankita Hota
Subject: Algorithms (CSEPC 209)	No. of Days/per week class allotted: 45days/	Semester From Date: 14/07/2025 To Date: 15/11/202 No. of Weeks: 15
Week	3 class per week	
	Class Day	Theory
L.	1 st	Course introduction, syllabus overview, assessment methods
	2 nd	Definition of algorithm; everyday examples
	3 rd	Criteria of algorithms: Input/Output, Finiteness
2 nd	1 st	Criteria continued: Definiteness, Effectiveness; examples
	2 nd	Pseudocode conventions and structure
	3rd	Writing an algorithm from a problem statement (sum of numbers)
3rd	1 st	Algorithm vs Program; mapping algorithms to code
	2 nd	Unit I recap and quiz
	3 rd	Algorithmic complexity concept; cost model
4 th	1 st	Space complexity fundamentals
	2 nd	Time complexity basics
	3 rd	Case analysis: worst, average, best
5 th	1 st	Big-O notation; formal definition
	2 nd	Common growth rates; graphical intuition
	3rd	Finding complexity by counting steps (practice)
6 th	1 st	Unit II tutorial & mini-quiz
	2 nd	Iteration vs Recursion concepts

	3 rd	Recursive Fibonacci algorithm; trace & complexity
7 ^փ	1 st	Recursive factorial; tail recursion
ייי - -		
	2 nd	Tower of Hanoi algorithm & complexity
	3rd	Converting recursive algorithms to iterative versions
8 th	1 st	Unit III tutorial/exercises
	2 nd	Overview of algorithm paradigms
	3 rd	Greedy paradigm principles; coin-change example
9 th	1 st	Divide & Conquer concept; merge sort overview
-	2 nd	Binary search as D&C example
	3 rd	Dynamic Programming intro; Fib DP & knapsack
10 th	l st	Branch and Bound basics; TSP pruning
	2 nd	Backtracking principles; N-Queens example
	3 rd	Paradigms comparative summary & exercises
11 th	1 st	Sorting problem definition; properties
	2 nd	Bubble sort algorithm & complexity
	3 rd	Selection sort algorithm & complexity
12 th	1 st	Insertion sort algorithm & complexity
	2 nd	Merge sort algorithm & complexity
	3 rd	Quicksort algorithm & complexity; pivot strategies
13 th	1 st	Heap sort algorithm & complexity; heap operations
	2 nd	Radix sort algorithm; counting vs radix
	3 rd	Graphs: definitions; representations
14 th	1 st	Paths, cycles, spanning trees
	2 nd	Directed Acyclic Graphs and Topological sorting
	3 rd	Minimum Spanning Tree: Kruskal algorithm
15 th .	1 st	Minimum Spanning Tree: Prim algorithm
	2 nd	Shortest Path algorithms: Dijkstras
	3 rd	Flow-based algorithms overview; course review

Iprila Ankita Hota Signature of Faculty

