LESSON PLAN

Name Of The Institute:		C. V. Raman Polytechnic	
Department:		Mathematics	
Semester/Division/Branch:		3 rd Sem	
Subject Name With Code:		Engineering Mathematics - III (Th.3)	
Total No. Of Class (Required):		60	
Faculty Name:		Dr. Soumyarani Mishra	
Class No.	Brief Description Of	The Topic/Chapter To Be Taught	Remarks
1	Mission, Vision, COS		
2	1. Complex Numbers 1.1 Real and Imaginary num 1.2 Complex numbers, conju Amplitude of a complex num	nbers. ugate complex numbers, Modulus and nber	
3	1.3 Geometrical Representa 1.4 Properties of Complex N	ation of Complex Numbers. Jumbers.	
4	1.5 Determination of three c	ube roots of unity and their properties.	
5	1.6 De Moivre's theorem		
6	Problem solving		
7	Problem solving		
8	 Matrices 2.1. Define rank of a matrix. 2.2. Perform elementary row of a matrix. 	v transformations to determine the rank	
9	2.3. State Rouche's theorem equations in unknowns.2.4. Solve equations in three	n for consistency of a system of linear e unknowns testing consistency.	
10	Examples		
11	3.Linear Differential Equat 3.1. Define Homogeneous a Differential Equations with c	t ions and Non Homogeneous Linear constant coefficients with examples.	
12	3.2. Find general solution of C.F. and P.I. 3.3. Derive rules for finding	⁻ linear Differential Equations in terms of C.F. And P.I. in terms of operator D.	
13	3.4. Define partial differentia 3.5. Form partial differential constants and arbitrary	al equation (P.D.E) . equations by eliminating arbitrary	

	functions.		
14	3.6. Solve partial differential equations of the form Pp + Qq = R		
15	Examples		
16	Examples		
17	Class Test-1		
18	4. Laplace Transforms 4.1. Define Gamma function.		
19	4.2. Define Laplace Transform of a function and Inverse Laplace Transform .		
20	4.3. Derive L.T. of standard functions and explain existence conditions of L.T.		
21	4.4. Explain linear, shifting property of L.T.		
22	4.5. Formulate L.T. of derivatives, integrals, multiplication by and division by .		
23	EXAMPLES		
24	EXAMPLES		
25	4.6. Derive formulae of inverse L.T. and explain method of partial fractions.		
26	EXAMPLES		
27	EXAMPLES		
28	EXAMPLES		
29	 5. Fourier Series 5.1. Define periodic functions. 5.2. State Dirichlet's condition for the Fourier expansion of a function and it's convergence 		
30	EXAMPLES		
31	5 .3. Express periodic function satisfying Dirichlet's condition for the Fourier expansion .		
32	5.4. State Euler's formulae. 5.5. Define Even and Odd functions and find Fourier Series.		
33	EXAMPLES		
34	EXAMPLES		
35	5.6. Obtain F.S of continuous functions and functions having points of discontinuity.		
36	EXAMPLES		
37	EXAMPLES		
38	6. Numerical Methods 6.1. Appraise limitation of analytical methods of solution of Algebraic Equations.		
39	6.2. Derive Iterative formula for finding the solutions of AlgebraicEquations by :6.2.1. Bisection method		

40	6.2.2. Newton- Raphson method	
41	EXAMPLES	
42	7. Finite difference and interpolation 7.1. Explain finite difference and form table of forward and backward difference.	
43	7.2. Define shift Operator and establish relation between & difference operator.	
44	EXAMPLES	
45	7.3. Derive Newton's forward and backward interpolation formula for equal intervals.	
46	EXAMPLES	
47	EXAMPLES	
48	7.4. State Lagrange's interpretation formula for unequal intervals.	
49	EXAMPLES	
50	7.5. Explain numerical integration and state: 7.5.1.Newton's Cote's formula.	
51	7.5.2. Trapezoidal rule.	
52	EXAMPLES	
53	7.5.3. Simpson's 1/3 ^ª rule.	
54	EXAMPLES	
55	EXAMPLES	
56	CLASS TEST-II	
57	REVESION	
58	REVESION	
59	REVESION	
60	REVESION	