C. V. RAMAN POLYTECHNIC, BHUBANESWAR

LESSON PLAN Session (2025-2026)

Discipline:	Semester: 3 RD Semester,	Name of the Faculty:
ELECTRICAL	Winter/2025	PALLAVI MISHRA
ENGINEERING		ASST.PROF
		Email ID: Pallavi.mishra@cvrp.edu.in
Subject Name with code:	No. of Days/week: 03	Start Date:14.07.2025
INTRODUCTION TO	Total No. of Class	End Date:15.11.2025
ELECTRIC	(Required): 45	
GENERATION		
SYSTEMS (EEPC201)		

Week	Class Day	Brief description of the Topic/Chapter to be taught
	1 st	1. Thermal Power Plants: Coal, Gas/Diesel and Nuclear-based
		Layout and working of a typical thermal power plant with steam turbines and
		electric generators
1st	2 nd	Layout and working of a typical thermal power plant with steam turbines and
		electric generators
	3 rd	Layout and working of a typical thermal power plant with steam turbines and
		electric generators
	1st	Properties of conventional fuels used in the energy conversion equipment used
		in thermal power plants: Coal, Gas, Diesel, Nuclear fuels-fusion and fission action
2nd	2 nd	Properties of conventional fuels used in the energy conversion equipment used
		in thermal power plants: Coal, Gas, Diesel, Nuclear fuels-fusion and fission
		action
	Q red	Properties of conventional fuels used in the energy conversion equipment used
	$3^{\rm rd}$	in thermal power plants: Coal, Gas, Diesel, Nuclear fuels-fusion and fission
		action
	1st	Safe Practices and working of various thermal power plants: coal- based, gas-
3rd	and	based, diesel-based, and nuclear-based
	2 nd	Safe Practices and working of various thermal power plants: coal- based, gas-
	Ord	based, diesel-based, and nuclear-based
	3 rd	Functions of the following types of thermal power plants and their major
	1 .	auxiliaries
	1st	Coal fired boilers: fire tube and water tube
4th	2 nd	Revision
	2	Revision
	3 rd	Quiz

	1st	Gas/diesel based combustion engines
5th	2 nd	Types of nuclear reactors :Disposal of nuclear waste and nuclear shielding
	3 rd	Types of nuclear reactors :Disposal of nuclear waste and nuclear shielding
	1st	Types of nuclear reactors :Disposal of nuclear waste and nuclear shielding
	2 nd	2. Large Hydropower Plants
6th		Energy conversion process of hydro power plant
	$3^{\rm rd}$	Energy conversion process of hydro power plant
	1st	Classification of hydro power plant: High ,medium and low head
	2 nd	Construction and working of hydro turbines used in different types of hydro
7th		power plant
	3^{rd}	High head-Pelton turbine
8th	1st	Medium head-Francis turbine
	2 nd	Low head-Kaplan turbine
	3 rd	Safe Practices for hydro power plants
	1st	
	150	Locations of these different types of large hydro power plants in India
9th	2 nd	3. Micro-Hydropower Plants
		Lay out of micro hydro power plants
	3^{rd}	Lay out of micro hydro power plants
	1st	Different types of micro-hydro turbines for different heads
		Pelton turbines
10th	2^{nd}	Revision
	3 rd	Francis turbines
	1st	Quiz
11th	2 nd	Kaplan turbines
	3 rd	Locations of these different types of micro-hydro power plants in India
	1st	4. Economics of Power Generation and Interconnected Power System
		Related terms: connected load, firm power, cold reserve, hot reserve, spinning
12th		reserve. Base load and peak load plants; Load curve, load duration curve,
		integrated duration curve
	2^{nd}	Related terms: connected load, firm power, cold reserve, hot reserve, spinning
		reserve. Base load and peak load plants; Load curve, load duration curve,
	- •	integrated duration curve
	3^{rd}	Related terms: connected load, firm power, cold reserve, hot reserve, spinning
		reserve. Base load and peak load plants; Load curve, load duration curve
	1.04	integrated duration curve
	1st	Cost of generation: Average demand, maximum demand, demand factor, plant
		capacity factor, plant use factor, diversity factor, load factor and plant load factor

	2 nd	Cost of generation: Average demand, maximum demand, demand factor, plant
13th		capacity factor, plant use factor, diversity factor, load factor and plant load factor
	$3^{\rm rd}$	Cost of generation: Average demand, maximum demand, demand factor, plant
		capacity factor, plant use factor, diversity factor, load factor and plant load factor
	1st	Choice of size and number of generator units
14th	2^{nd}	Choice of size and number of generator units
	$3^{\rm rd}$	Combined operation of power station
		Causes, Impact and reasons of Grid system fault: State grid, national grid,
		brownout and blackout; sample blackouts at national and international level.
	1st	Causes, Impact and reasons of Grid system fault: State grid, national grid,
		brownout and blackout; sample blackouts at national and international level.
15th	2^{nd}	
		Question Discussion
	$3^{\rm rd}$	
		Question Discussion

Z

Signature of the Faculty

Josh

Signature of the H.O.D