5^{TH} SEM. / ETC & COMM. / ETC. & TELECOM. / 2022(W) Th-2 VLSI & Embedded System

Full Marks: 80

Answer any five Questions including Q No.1& 2

Figures in the right-hand margin indicates marks

1.		Answer All questions.	2 x 10
	a.	Define pinch off voltage of an NMOS transistor.	
	b.	Name the two lay out design rules of VLSI.	
	c.	Define noise margins (NM _L and NM _H) of a CMOS inverter.	
	d.	Implement XNOR gate using pass transistors.	
	e.	Write the full forms of the following. 1. ULSI 2. EDA 3. VHDL 4. PLD	
	f.	Define propagation delay of a CMOS inverter.	
	g.	Number of transistors per chip and minimum feature size with the evolution in VLSI technology. (Increases, decreases)	
	h.	Given $v_{GS}=1.2V$, $V_{TN}=0.6V$, $v_{DS}=0.9V$. Calculate overdrive voltage (v_{OV}) and mention the region of operation of NMOS transistor.	
	i.	What are the basic characteristics of an embedded system?	
	j.	Find/Derive the condition for symmetric delay of a static CMOS inverter.	
		Answer Any Six Questions	
2.			6 x 5
20	a.	Given $\mu_n C_{0X} = 160 \frac{\mu A}{V^2}$, $W = 0.36 \mu m$, $L = 0.18 \mu m$, $V_{TN} = 0.4 V$. Consider	
		NMOS transistor. For $v_{GS} = 0.6$, $v_{DS} = 1.0$ V, indicate the region of operation of the transistor, and calculate the drain current i_D .	
	b.	Realize a NOR2 gate using static CMOS and explain its working.	
	c.	Design a clocked D latch using static CMOS.	

What is FPGA? Explain its architecture with neat diagram.

Differentiate between SRAM and DRAM.

d.

e.

- f. Draw the stick diagram and lay out for static NAND2 gate.
- Find the worst-case Elmore parasitic delay of an n-input NAND gate. g

	3	Draw the steps for VLSI fabrication of an NMOS transistor.	10
	4	Explain the construction and working of an enhancement type NMOS transistor and plot the graph between i_D and v_{DS} .	10
	5	Explain the working of digital camera with the help of block diagram.	10
	6	Describe VLSI design methodology, design flow and Y chart.	10
	7	Implement full adder using static CMOS.	10
	071	Implement full adder using static CMOS.	
3201	-2023	0713201-20230	