3rdSEM./ AERO/AIRCRAFT MAINT.ENGG/AUTO/DIP MECH ENG./MECH./ MECH(MAINT.)/ MECH(PROD.) / MECH(SAND.) / MECH(IND.INT.) / 2022(W)

Th-4 Thermal Engineering-I

Full Marks: 80		wka 80		Time-3	Hrs
rı	III IVI	IIKS. 60	Answer any five Questions including Q No.1& 2		
			Figures in the right hand margin indicates marks		
1.		Answer All q	uestions		2 x 10
	@	What do you	understand by an ideal gas?		
	b.	Define therm	nodynamics.		
	c.		gines according to the type of fuel used.		
	d.	What is the s	significance of octane number in IC engine fuels?		
	e.	Differentiate	between intensive and extensive properties.		
	f.	Define the ca	olorific value of fuel.		
	g.	Define a Hea	t Engine.		
	h.	What is mea	nt by compression ratio in an IC engine?		
	V	State the Zer	oth Law of thermodynamics.		
	j.	Define therm	nal efficiency.		
2.		Answer Any	Six Questions		6 x 5
	a.	Explain Carno			
	b.	In a heat eng	gine, the temperature of the source and sink are 650° C an	d 60°C	
		respectively.	The heat supplied is 4.5 MJ/min. Find the power develop	ped by	
		the engine.			
	c.	Differentiate	between Octane number and Cetane number.		
	(d)	Discuss abou	t the limitations of First Law of Thermodynamics.		
2	1	Explain the w	orking of a four stroke engine.		
	f.	Prove C _p - C _v	= R.		
	g	Explain the q	uasi-static process.		
3		Explain the d	iesel cycle with the help of p-V and T-S diagram and de	rive an	10
		•	r the ideal efficiency of a diesel cycle.		
4		•	es 6 kg of fuel per hour of calorific value 41000 kJ/kg. I	f I.P. of	10
		•	21 kW and mechanical efficiency is 82%. Calculate, i) in		
		•	ency, ii) brake specific fuel consumption and iii) Brake t		
		efficiency.	<i>c.i.c,</i> ,, <i>c.</i> ,		
5		,	e detail about Point function & Path function. Differ	rentiate	10
-	V	between then			
6V			engine with a CI engine.		10
*			ivalence of two statements of 2 nd Law of thermodynami	CS.	10
9		anow the equ	ivalence of two statements of 2 Law of thermodynami	-51	