

1

 STUDY MATERIAL

On

SoftwareEngineering

(For 5th Semester CSE)

Prepared by :

Kshyamasagar Mahanta, Asst. Prof., CSE, CVRP

2

Course Contents

1. Introduction to Software Engineering 5-27

Program vs. Software product

Emergence of Software Engineering.

Computer Systems Engineering

Software Life Cycle Models
Classical Water fall model
Iterative Water fall model Prototyping

model

Evolutionary model Spiral model

2. Software Project Management 28-60

Responsibility of Project Manager
Project Planning
Metrics for Project size estimation(LOC and FP)

Project Estimation Techniques
COCOMO Models, Basic, Intermediate and complete
Scheduling
Organization and Team structure
Staffing
Risk Management
Configuration Management

3. Requirement Analysis and specification 61-71

Requirements gathering and analysis
Software Requirements Specification
Contents of SRS
Characteristics of Good SRS
Organization of SRS
Techniques for representing complexing logic

4. Software Design 72-91

What is a Good S/W design

Cohesion and coupling

Neat arrangement

S/W Design approaches

Structured analysis

Data Flow Diagrams

Symbols used in DFD

Designing DFD

Developing DFD model of a system

3

Shortcomings of DFD

Structured design

Principles of transformation of DFD to Structure Chart

Transform analysis and Transaction Analysis
Design Review

5. User Interface Design 92-103

Characteristics of Good Interface
Basic concepts of UID

Types of User interfaces

Components based GUI

development

6. Software Coding & Testing 104-123

Coding

Code Review
Code walk through
 Code inspections and software Documentation
Testing

Unit testing
Black Box Testing
Equivalence class partitioning and boundary value analysis
White Box Testing
Different White Box methodologies

statement coverage branch coverage

condition coverage

path coverage

cyclomatic complexity

data flow based testing

mutation testing

Debugging approaches

Debugging guidelines

Integration Testing

Phased and incremental integration testing

System testing alphas beta and acceptance testing

Performance Testing, Error seeding
General issues associated with testing

4

7. Software Reliability 124-134

Software Reliability
Different reliability metrics
Reliability growth modeling
Software quality
Software Quality Management System

Model Question for Software Engineering 135-137

BOOKS Recommended:-

Sl.No

Name of Authors

Title of the Book

Name of the
publisher

01 Rajib Mall Fundamentals of

Software Engineering

PHI

02 Deepak Jain Software Engineering:
Principles and Practice

Oxford university
press

03 Jawadekar Software Engineering: A

Primer

TMH

5

Contents

Chapter – 1

Introduction to Software Engineering

Program vs. Software product

Emergence of Software Engineering.

Computer Systems Engineering

Software Life Cycle Models
Classical Water fall model
Iterative Water fall model Prototyping model

Evolutionary model Spiral model

 Relevance of Software Engineering

Software engineering is the field of computer science that deals with the

building of software systems which are so large or so complex that they are

build by a team or teams of engineers.

Parnas has defined software engineering as “multi-person construction of multi-

version software”.

According to Fritz Bauer, software engineering is “The establishment and use of

sound engineering principles in order to obtain economically software that is

reliable and works efficiently on real machines”.

Stephen Schach defined as “ A discipline whose aim is the production of quality

software, software that is delivered on time, within budget, and that satisfies its

requirements”.

Software has become critical to advancement in almost all areas of human

endeavour. The art of programming only is no longer sufficient to construct

6

large programs. There are serious problems in the cost, timeliness, maintenance

and quality of many software products.

The foundation for software engineering lies in the good working knowledge of

computer science theory and practice. The theoretical background involves

knowing how and when to use data structures, algorithms and understanding

what problems can be solved and what cannot. The practical knowledge

includes through understanding of the workings of the hardware as well as

thorough knowledge of the available programming languages and tools.

Software engineering has the objective of solving these problems by producing

good quality, maintainable software, on time, within budget. To achieve this

objective, we have to focus in a disciplined manner on both the quality of the

product and on the process used to develop the product.

 Software Characteristics and Applications

Software is a logical rather than a physical system element. Its characteristics

that make it different from other things human being build.

 Software is developed or engineered, it is not manufactured in the

classical sense which has quality problem.

 Software does not “wear out”, but it deteriorates due to change.

 Although the industry is moving toward component-based construction,

most software continues to be custom-built. Modern reusable components

encapsulate data and processing into software parts to be reused by

different programs. E.g. graphical user interface, window, pull-down

menus in library etc.

Software Applications

Software may be applied in any situation for which a pre-specified set of

procedural steps has been defined. Information content and determinacy are

7

import factors in determining the nature of a software application. Contents

refer to the meaning and form of incoming and outgoing information.

Applications are:

 System software: System software is a collection of programs written to

service other programs. Examples of system software are compilers,

editors, file management utilities, operating system components, drivers.

 Application software: Stand-alone programs for specific needs.

 Engineering / scientific software: Characterized by “number crunching”

algorithms. Such as automotive stress analysis, molecular biology, orbital

dynamics etc.

 Embedded software resides within a product or system.

 Product-line software focus on a limited marketplace to address mass

consumer market.

 Web based software, the web pages retrieved by a browser are software

that incorporates executable instructions and data. As web 2.0 emerges,

more sophisticated computing environments is supported integrated with

remote database and business applications.

 AI software uses non-numerical algorithm to solve complex problem.

Examples are Robotics, expert system, pattern recognition, game playing.

 Emergence of Software Engineering

Software engineering techniques have evolved over many years which resulted

series of innovations and accumulation of experience about writing good quality

programs. Innovations and programming experiences which have contributed to

the development of software engineering are briefly describe in Article 1.4.

8

Early Computer Programming, High Level Language

Programming, Control Flow Based Design, Data Flow Oriented

Design, Data Structure Oriented Design, Object and Component

Bases Design

Early Computer Programming

Early commercial computers were very slow as compared to today's standard

computers. Even simple processing tasks took more computation time on those

computers. No wonder that programs at that time very small in size and lacked

sophistication. Those programs were usually written in assembly languages.

Program lengths were typically limited to about a few hundreds of lines of

monolithic assembly code. Every programmer writing the programs in his own

style.

High-Level Language Programming

Computers become faster with the introduction of the semiconductor

technology. With the availability of more powerful computers, it became

possible to solve larger and more complex problem. High Level languages such

as FORTRAN, ALGOL and COBOL were introduced. This considerably

reduced the effort required to develop software products and helped

programmers to write larger programs. However, the software development

style was limited to sizes of around a few thousands of lines of source code.

Control Flow-Based Design

Programmers found it increasingly difficult not only to write cost effective and

correct programs, but also to understand and maintain programs written by

others. Thus particular attention is paid to the design of a program’s control

flow structure.

10

A program's control flow structure indicates the sequence in which the

programs instructions are executed.

Data Structure-Oriented Design

Software engineers were now expected to develop larger more complicated

software products which often required writing in excess of several tens of

thousands of lines of source code. The control flow-based programs

development techniques could not be satisfactorily used to handle these

problems and therefore more effective program development techniques were

needed. Using data structure-oriented design techniques, first a program's data

structures are designed. In the next step, the program design is derived from the

data structure.

Object-Oriented Design

An object-Oriented design technique is an intuitively appealing approach, where

the natural objects occurring in a problem are first identified and then the

relationships the objects such as composition, reference, and inheritance are

determined. Each object essentially acts as a data hiding or data abstraction

entry. Object-oriented techniques have gained wide acceptance because of their

simplicity, code and design reuse scope they offer and promise of lower

development time, lower development cost more robust code and easier

maintenance.

 Software Life Cycle Models

The goal of software engineering is to provide models and processes that lead to

the production of well-documented maintainable software.

A life cycle model prescribes the different activities that need to be carried

11

out to develop a software product and the sequencing of these activities.

A software life cycle is the series of identifiable stages that a software product

undergoes during its lifetime. It also captures the order in which these activities

are to be undertaken.

A software life cycle model is a descriptive and diagrammatic representation of

the software life cycle.

The various phases of software life cycle or Software Development Life Cycle

(SDLC) are:

 Preliminary Investigation

 Software Analysis

 Software Design

 Software Testing

 Software Maintenance

A software life cycle model is referred to as software process model.

 Classical Waterfall Model and Iterative Waterfall Model

This model is called as linear sequential model. This model suggests a

systematic approach to software development.

The project development is divided into sequence of well-defined phases. It can

be applied for long-term project and well understood product requirement.

The classical waterfall model breaks down the life cycle into an intuitive set of

phases. Different phases of this model are:

 Feasibility study

 Requirements analysis and specification

 Design

 Coding and unit testing

12

 Integration and system testing

 Maintenance

Fig. 1.1 Classical Waterfall Model

The phases starting from the feasibility study to the integration and system

testing phases are known as the development phases. All these activities are

performed in a set of sequence without skip or repeat. None of the activities can

be revised once closed and the results are passed to the next step for use.

Feasibility Study

The main of the feasibility study is to determine whether it would be financially,

technically and operationally feasible to develop the product. The feasibility

study activity involves the analysis of the problem and collection of all relevant

information relating to the product such as the different data items which would

be input to the system, the processing required to be

Requirement

Analysis and

Specification

Integration

and System

Testing

Feasibility

Study

Design

Coding and

Unit Testing

Maintenance

13

carried out on these data, the output data required to be produced by the system.

Technical Feasibility

Can the work for the project be done with current equipment, existing software

technology and available personnel?

Economic Feasibility

Are there sufficient benefits in creating the system to make the costs

acceptable?

Operational Feasibility

Will the system be used if it is developed and implemented?

These phases capture the important requirements of the customer, also

formulate all the different ways in which the problem can be solved are

identified.

Requirement Analysis and Specifications

The goal of this phase is to understand the exact requirements of the customer

regarding the product to be developed and to document them properly.

This phase consists of two distinct activities:

 Requirements gathering and analysis.

 Requirements specification.

Requirements Gathering and Analysis

This activity consists of first gathering the requirements and then analyzing

14

the gathered requirements.

The goal of the requirements gathering activity is to collect all relevant

information regarding the product to be developed from the customer with a

view to clearly understand the customer requirements.

Once the requirements have been gathered, the analysis activity is taken up.

Requirements Specification

The customer requirements identified during the requirement gathering and

analysis activity are organized into a software requirement specification (SRS)

document. The requirements describe the “what” of a system, not the “how”.

This document written in a natural language contains a description of what the

system will do without describing how it will be done. The most important

contents of this document are the functional requirements, the non- functional

requirements and the goal of implementation. Each function can be

characterized by the input data, the processing required on the input data and the

output data to be produced. The non-functional requirements identify the

performance requirements, the required standards to be followed etc. The SRS

document may act as a contract between the development team and customer.

Design

The goal of this phase is to transform the requirements specified in the SRS

document into a structure that is suitable for implementation in some

programming language. Two distinctly different design approaches are being

used at present. These are:

 Traditional design approach

 Object-oriented design approach

15

Traditional Design Approach

The traditional design technique is based on the data flow oriented design

approach.

The design phase consists of two activities: first a structured analysis of the

requirements specification is carried out, second structured design activity.

Structured analysis involves preparing a detailed analysis of the different

functions to be supported by the system and identification of the data flow

among the functions. Structured design consists of two main activities:

architectural design (also called high level design) and detailed design (also

called low level design).

High level design involves decomposing the system into modules, representing

the interfaces and the invocation relationships among the modules. Detailed

design deals with data structures and algorithm of the modules.

Object-Oriented Design Approach

In this technique various objects that occur in the problem domain and the

solution domain are identified and the different relationships that exist among

these objects are identified.

Coding and Unit Testing

The purpose of the coding and unit testing phase of software development is to

translate the software design into source code. During testing the major

activities are centred on the examination and modification of the code. Initially

small units are tested in isolation from rest of the software product. Unit testing

also involves a precise definition of the test cases, testing criteria and

management of test cases.

16

Integration and System Testing

During the integration and system testing phase the different modules are

integrated in a planned manner. Integration of various modules are normally

carried out incrementally over a number of steps. During each integration step

previously planned modules are added to the partially integration system and the

resultant system is tested. Finally, after all the modules have been

successfully integrated and tested system testing is carried out.

The goal of system testing is to ensure that the developed system confirms to its

requirements laid out in the SRS document. System testing usually consists of

three different kinds of testing activities:

 α –testing: α testing is the system testing performed by the development

team.

 β –testing: This is the system testing performed by a friendly set of

customers.

 Acceptance testing: This is the system testing performed by the customer

himself after the product delivery to determine whether to accept the

delivered product or to reject it.

System testing is normally carried out in a planned manner according to a

system test plan document. The results of information and system testing are

documented in the form of a test report.

Maintenance

Software maintenance is a very broad activity that includes error correction,

enhancement of capabilities and optimization. The purpose of this phase is to

preserve the value of the software over time. Maintenance involves performing

the following activities:

17

 Corrective Maintenance

This type of maintenance involves correcting error that were not

discovered during the product development phase.

 Perfective Maintenance

This type of maintenance involves improving the implementation of the

system and enhancing the functionalities of the system according to the

customer’s requirements.

 Adaptive Maintenance

Adaptive maintenance is usually required for reporting the softer to work

in a new environment.

Iterative Waterfall Model

The classical waterfall model is an idealistic one since it assumes that no

development error is ever committed by the engineers during any of the life

cycle phases. However in practical development environment, the engineers do

commit a large number of errors in different phases of the life cycle. The source

of the defects can be wrong assumptions, use of in appropriate technology,

communication gap among the project developers etc. These defects usually get

detected much later in the life cycle. Suppose a defect is detected at testing

phase the engineers need to go back to the phase where the defect had occurred

and correct the work done during that phase and the subsequent phases to

correct the defect and its effect on the later phases.

In any practical software development work it is not possible to strictly follow

the classical waterfall model.

Feedback paths are needed in the classical waterfall model from every phase to

its preceding phases.

18

Feasibility

Study

Requirement analysis

and specification

It may not always be possible to detect all error in the same phase in which they

occur. The feedback paths allow for correction of the errors committed during a

phase, as and when these are detected. If during testing a design error is

identified then the feedback path allows the design to reworked and the changes

to be reflected in the design documents. However observe that there is no

feedback path to the feasibility stage. This means that the feasibility study error

can not be corrected.

Though errors are inevitable in almost every phase of development, it is

desirable to detect these errors in the same phase in which they occur. This can

reduce the effort required for correcting bugs. The principle of detecting errors

as close to there points of introduction as possible is known as phase

containment of errors. This is an important software engineering principle.

Integration and

system testing

Coding and

unit testing

Design

Maintenance

Fig. 1.2 Iterative waterfall Model

19

 Prototyping Model

Prototyping is an attractive idea for complicated and large systems for which

there is no manual process or existing system to help to determine the

requirements.

The main principle of prototyping model is that the project is built quickly to

demonstrate the customer who can give more inputs and feedback. This model

will be chosen

 When the customer defines a set of general objectives for software but

does not provide detailed input, processing or output requirements.

 Developer is unsure about the efficiency of an algorithm or the new

technology is applied.

A prototype usually exhibits limited functional capabilities, low reliability and

inefficient performance compared to the actual software. A developed prototype

can help engineers to critically examine the technical issues associated with

product development.

20

Design

Implement

Test

The development of the prototype starts when the preliminary version of the

requirements specification document has been developed. A quick design is

carried out and the prototype is built. The developed prototype is submitted to

the customer for his evaluation. Based on the experience, they provide

Requirements

gathering

Customer evaluation

of prototype

Refine

requirements

incorporating

customer
suggestions

Maintain

Fig. 1.3 Prototyping Model of Software Development

Build

Prototype

Quick

design

21

feedback to the developers regarding the prototype: what is correct, what needs

to be modified, what is missing, what is not needed etc. Based on the customer

feedback the prototype is modified and then the users and the clients are again

allowed to use the system. This cycle of obtaining customer feedback and

modifying the prototype continues till the customer approves the prototype.

After the finalization of software requirement and specification (SRS)

document, the prototype is discarded and actual system is then developed using

the iterative waterfall approach.

Prototyping is often not used, because that development costs may become

large. However in some situations, the cost of software development without

prototyping may be more than with prototyping. Prototype model is well suited

for projects where requirements are hard to determine. This model requires

extensive participation and involvement of the customer, which is not always

possible.

 Evolutionary Model

This life cycle model is also referred as the successive versions model and the

incremental model. In this life cycle model the software is first broken down

into several modules or functional units which can be incrementally constructed

and delivered.

22

Fig. 1.4 Evolutionary model of software development

A, B, C are modules of a software product that are incrementally developed and

delivered.

The development team first develops the core modules of the system. That is

basic requirements are addressed but many supplementary features remain

undelivered. The initial product is refined into increasing levels of capability by

adding new functionalities in successive versions. Each evolutionary version

may be developed using an interactive waterfall model of development.

23

Fig. 1.5 Evolutionary Model of Software Development

Each successive version of the product is fully functioning software capable of

performing more useful work than the previous version. In this model the user

gets a chance to experiment with partially developed software much before the

complete version of the system is released. Therefore the evolutionary model

helps to accurately elicit user requirements during the delivery of the different

versions of the software and the change requests

Rough requirements specification

Identify the core and other parts to

be developed incrementally

Develop the core part using an iterative

waterfall model

Develop the next identified features

using an iterative waterfall model

Collect customer feedback and modify

requirements

Maintenance

24

after delivery of the complete software are minimized.

The evolutionary model is used when the customer prefers to receive the

products in increments rather than waiting for the full product to be developed

and delivered. The evolutionary model is very popular for object oriented

software development project.

The main disadvantage of the successive versions model is that for most

practical problems it is difficult to divide the problem into several functional

units which can be incrementally implemented and delivered. The evolutionary

model is normally useful for only very large products.

 Spiral Model

The spiral model also known as the spiral life cycle model is a systems

development life cycle model used in information technology. This model of

development combines the features of the prototyping model, the waterfall

model and other models. The diagrammatic representation of this model appears

like a spiral with many loops.

25

Fig:-Spiral Model

The exact number of loops in the spiral is not fixed. Each loop of the

spiral represents a phase of the software process.

The innermost loop might be concerned with feasibility study that is

the new system requirements are

The exact number of loops in the spiral is not fixed. Each loop of the spiral

represents a phase of the software process. The innermost loop might be

concerned with feasibility study that is the new system requirements are

defined in details. Next a preliminary design is created for the new system

and so on. This model is much more flexible compared to the other models

Fig. 1.6 Spiral Model of Software Development

Exact number of phases through which the product is developed in this model

is not fixed. The number of phases varies from one project to another. Each

phase in this model is split into four sectors or quadrants:

 Planning: Identifies the objectives of the phase and the alternative

solutions possible for the phase and constraints.

 Risk analysis: Analyze alternatives and attempts to identify and resolve

the risks involved.

3. Develop
next level of

the product

4. Review and

plan for next

phase

1.Idetermine objectives

and identify alternative
solutions

2. Identify and

resolve risks

26

 Development: Product development and testing product.

 Assessment: Customer evaluation.

During the first phase planning is performed, risks are analyzed, prototypes are

built and customers evaluate the prototype. During the second phase a second

prototype is evolved by a fourfold procedure: evaluating the first prototype in

terms of its strengths, weaknesses and risks, defining the requirements of the

second prototype, constructing and testing the second prototype. The existing

prototype is evaluated in the same manner as was the previous prototype and if

necessary another prototype is developed. After several iterations along the

spiral, all risks are resolved and the software is ready for development. At this

point, a waterfall model of software development is adopted.

The radius of the spiral at any point represents the cost incurred in the project

till then and the angular dimension represents the progress, made in the current

phase.

In the spiral model of development, the project team must decide how exactly to

structure the project into phases. The most distinguishing feature of this model

is its ability to handle risks. The spiral model uses prototyping as a risk

reduction mechanism and also retains the systematic step-wise approach of the

waterfall model.

Spiral Model Strengths

 Provides early indication of risks, without much cost.

 Critical high-risk functions are developed first.

 Early and frequent feedback from users.

 Cumulative costs assessed frequently.

27

Spiral Model Weaknesses

 The model is complex.

 Risk assessment expertise is required.

 May be hard to define objectives.

 Spiral may continue indefinitely.

 Time spent planning, resetting objectives, doing risk analysis and

prototyping may be excessive.

28

Chapter - 2

Understanding Project Management

Contents

Software Project Management

Responsibility of Project Manager
Project Planning
Metrics for Project size estimation(LOC and FP)

Project Estimation Techniques
COCOMO Models, Basic, Intermediate and complete
Scheduling
Organization and Team structure
Staffing
Risk Management
Configuration Management

 Project Management Concepts

The main goal of software project management is to enable a group of software

engineers to work efficiently towards successful completion of the project. The

management of software development is dependent on four factors:

 The People

 The Product

 The Process

 The Project

29

 People

Project
Product

Fig. 2.1 Factors of Management Dependency

Effective software project management focuses on these items in this order:

o The people

 Deals with the cultivation of motivated, highly skilled people.

 Consists of the stack holders, the team leaders, and the software

team.

o The Product

 Product objectives and scope should be established before a

project can be planned.

o The Process

 The software process provides the framework from which a

comprehensive plan for software development can be established.

o The Project

 Planning and controlling a software project is done for one primary

reason, it is the only known way to manage complexity.

 In a 1998 survey, 26% of software projects failed outright, 46%

experienced cost and schedule overruns.

1

4
Dependency

order 2

3

Process

30

 Project Management

There are many software engineers involved in the development of a software

product. The primary job of the project manager is to ensure that the project is

completed within budget and on schedule.

Job Responsibilities of a Software Project Manager

 Software managers are responsible for planning and scheduling project

development. Manager must decide what objectives are to be achieved,

what resources are required to achieve the objectives, how and when the

resources are to be acquired and how the goals are to be achieved.

 Software managers takes responsibility for project proposal writing,

project cost estimation, project staffing, project monitoring and control,

software configuration management, risk management, interfacing with

clients, managerial report writing and presentation.

 Software managers monitor progress to check that the development is on

time and within budget.

Skills Necessary for Software Project Management

 Good qualitative judgment and decision-making capabilities

 Good knowledge of latest software project management

techniques such as cost estimation, risk management, configuration

management.

 Good communication skill and previous experience in managing similar

projects.

31

Project Planning

Software managers are responsible for planning and scheduling project

development. They monitor progress to check that the development is on time

and within budget. The first component of software engineering project

management is effective planning of the development of the software. Project

planning consists of the following activities:

 Estimate the size of the project.

 Estimate the cost and duration of the project. Cost and duration

estimation is usually based on the size of the project.

 Estimate how much effort would be required?

 Staff organization and staffing plans.

 Scheduling man power and other resources.

 The amount of computing resources (e.g. workstations, personal

computers and database software). Resource requirements are estimated

on the basis of cost and development time.

 Risk identification, analysis.

Fig. 2.2 Precedence Ordering among Planning Activities

Size estimation is the first activity. The size is the key parameter for the

estimation of other activities. Other components of project planning are

estimation of effort, cost, resources and project duration.

Cost

Estimation

Duration

Estimation

Size

Estimation

Project

Staffing

Scheduling

Effort

Estimation

32

Sliding Window Technique

In this technique starting with an initial plan, the project is planned more

accurately in successive development stages. At the start of a project, project

manager have incomplete knowledge about the details of the project. The

information gradually improves as the project progress through different phases.

After the completion of every phase, the project manager can plan each

subsequent phase more accurately and with increasing levels of confidence.

 Project Size Estimation Metrics, Line Of Control (LOC)

and Function Point Metric (FP)

The size of a project is obviously not the number of bytes that the source code

occupies. The project size is a measure of the problem complexity in terms

of the effort and time required to develop the product.

Two metrics are widely used to estimate size:

 Lines of Code (LOC)

 Function Point (FP)

Lines Of Code (LOC)

LOC can be defined as the number of delivered lines of code in software

excluding the comments and blank lines. LOC depends on the programming

language chosen for the project. The exact number of the lines of code can only

be determined after the project is complete since less information about the

project is available at the early stage of development.

In order to estimate the LOC count at the beginning of a project, project

managers usually divide the problem into modules and each modules into sub

modules and a so on until the sizes of the different leaf level modules can be

approximately predicted.

33

Disadvantages:

 LOC is language dependent. A line of assembler is not the same as a line

of COBOL.

 LOC measure correlates poorly with the quality and efficiency of the

code. A larger code size does not necessary imply better quality or higher

efficiency.

 LOC metrics penalizes use of higher level programming languages, code

reuse etc.

 It is very difficult to accurately estimate LOC in the final product from

the problem specification. The LOC count can be accurately computed

only after the code has been fully developed.

Function Point Metric

 Function Points measure software size by quantifying the functionality

provided to the user based solely on logical design and functional

specifications

 Function point analysis is a method of quantifying the size and

complexity of a software system in terms of the functions that the system

delivers to the user

 It is independent of the computer language, development methodology,

technology or capability of the project team used to develop the

application.

 Function point analysis is designed to measure business applications (not

scientific applications) .

 Function points are independent of the language, tools, or methodologies

used for implementation

 Function points can be estimated early in analysis and design

 Since function points are based on the system user’s external view of

34

the system, non-technical users of the software system have a better

understanding of what function points are measuring.

Objectives of Function Point Counting

 Measure functionality that the user requests and receives

 Measure software development and maintenance independently of

technology used for implementation

Steps of Function Point Counting

 Determine the type of function point count

 Identify the counting scope and application boundary

 Determine the Unadjusted Function Point Count

 Count Data Functions

 Count Transactional Functions

 Determine the Value Adjustment Factor

 Calculate the Adjusted Function Point Count

Function point metric estimates the size of a software product directly from the

problem specification.

The different parameters are:

 Number Of Inputs:

Each data item input by the user is counted.

 Number Of Outputs:

The outputs refers to reports printed, screen outputs, error messages

produced etc.

 Number Of Inquiries:

It is the number of distinct interactive queries which can be made by the

users.

 Number Of Files:

Each logical file is counted. A logical file means groups of logically related

data. Thus logical files can be data structures or physical files.

35

 Number Of Interfaces:

Here the interfaces which are used to exchange information with other

systems. Examples of interfaces are data files on tapes, disks,

communication links with other systems etc.

Function Point (FP) is estimated using the formula:

FP = UFP (Unadjusted Function Point) * TCF (Technical Complexity

Factor)

UFP = (Number of inputs) * 4 + (Number of outputs) * 5 + (Number of

inquiries) * 4 + (Number of files) * 10 + Number of interfaces) * 10

TCF = DI (Degree of Influence) * 0.01

The unadjusted function point count (UFP) reflects the specific countable

functionality provided to the user by the project or application.

Example- Once the unadjusted function point (UFP) is computed, the

technical complexity factor (TCF) is computed next. The TCF refines the

UFP measure by considering fourteen other factors such as high transaction

rates, throughput and response time requirements etc. Each of these 14

factors is assigned a value from 0 (not present or no influence) to 6 (strong

influence). The resulting numbers are summed, yielding the total degree of

influence (DI). Now, the TCF is computed as (0.65+0.01*DI). As DI can

vary from 0 to 70, the TCF can vary from 0.65 to 1.35.

Finally FP = UFP *TCF

Feature Point Metric

Feature point metric incorporates an extra parameter in to algorithm complexity.

This parameter ensures that the computed size using the feature point metric

reflects the fact that the more the complexity of a function, the greater the effort

required to develop it and therefore its size should be larger compared to

simpler functions.

36

Project Estimation Techniques

The estimation of various project parameters is a basic project planning

activity. The project parameters that are estimated include:

 Project size(i.e. size estimation)

 Project duration

 Effort required to develop the software

There are three broad categories of estimation techniques:

 Empirical estimation techniques

 Heuristic techniques

 Analytical estimation techniques

Empirical Estimation Techniques

Empirical estimation techniques are based on making an educated guess of the

project parameters. While using this technique, prior experience with the

development of similar products is useful.

Heuristic Techniques

Heuristic techniques assume that the relationships among the different project

parameters can be modelled using suitable mathematical expressions. Once the

basic (independent) parameters are known, the other (dependent) parameters

can be easily determined by substituting the value of the basic parameters in the

mathematical expression. Different heuristic estimation models can be divided

into two categories:

 Single variable model

 Multivariable model

A single variable estimation model takes the following form:

Estimated parameter = c1* ed1

Where e is a characteristics of the software, c1 and d1 are constants.

37

A multivariable cost estimation model takes the following form:

Estimated Resource = c1 * e1
d1 + c2 * e2

d2 +

Where e1, e2 ... are the basic characteristics of the software.

c1, c2, d1, d2 ... are constants.

Analytical Estimation Techniques

Analytical estimation techniques derive the required results starting with certain

basic assumptions regarding the project. This technique does have a scientific

basis.

Halstead’s Software Science an Analytical Estimation Techniques

Halstead’s software science is an analytical technique to measure size,

development effort, and development cost of software products. Halstead used a

few primitive program parameters to develop the expressions for the overall

program length, potential minimum volume, language level, and development

time.

For a given program, let:

 η1 be the number of unique operators used in the program

 η2 be the number of unique operands used in the program

 N1 be the total number of operators used in the program

 N2 be the total number of operands used in the program.

There is no general agreement among researchers on what is the most

meaningful way to define the operators and operands for different programming

languages.

For instance, assignment, arithmetic, and logical operators are usually counted

as operators. A pair of parentheses, as well as a block begin and block end pair,

are considered as single operators.

The constructs if......then.......else.....endif and a while......do are treated as single

operators. A sequence operator ‘;’ is treated as a single operator.

38

Operators and Operands for the ANSI C Language

The following is a suggested list of operators for the ANSI C language:

({ . , -> * + - ~ ! ++ -- * / % + - << >> < > <= >= != == & ^ | && \\ = *=

/= %= -= <<= >>= &= ^= \= : ? { ; CASE DEFAULT IF ELSE SWITCH

WHILE DO FOR GOTO CONTINUE BREAK RETURN and a function

name in a function call.

Length and Vocabulary

The length of a program as defined by Halstead, quantifies the total usage of all

operations and operands in the program. Thus, length N = N1 + N2

The program vocabulary is the number of unique operators and operands used

in the program. Thus, program vocabulary η = η1 + η2

Program Volume

The length of a program depends on the choice of the operators and operands

used.

V = N log2 η

The program volume V is the minimum number of bits needed to encode the

program. In fact, to represent η different identifiers uniquely, we need at least

log2 η bits. We need N log2 η bits to store a program of length N. Therefore, the

volume V represents the size of the program by approximately compensating for

the effect of the programming language used.

Effort and Time

The effort required to develop a program can be obtained by dividing the

program volume by the level of the programming language used to develop the

code. Thus, effort E = V / L, where E is the number of mental discriminations

required to implement the program and also the effort required to read and

understand the program.

39

Actual Length Estimation

Even though the length of a program can be found by calculation the total

number of operators and operands in a program.

N=η1 log2 η1 + η2 log2 η2

Empirical Estimation Techniques

Cost estimation is a part of the planning stage of any engineering activity. For

any new software project, it is necessary to know how much it will cost to

develop and how much development time it will take. Cost in a project is due to

the requirements for software, hardware and human resources. Hardware

resources such as computer time, terminal time and memory required for the

project, software resources include the tools and compilers needed during

development.

Cost estimates can be made either top-down or bottom-up. Top-down estimation

first focuses on system level costs such as the computing resources and personal

required to develop the system, quality assurance, system integration, training.

Bottom-up cost estimation first estimates the cost to develop each module or

subsystem. Those costs are combined to arrive at an overall estimate. Two

popular empirical estimation techniques are:

 Expert Judgment Technique

The most widely used cost estimation technique is the expert judgment, which is

an inherently top-down estimation technique. In this approach an expert makes

an educated guess of the problem size after analyzing the problem thoroughly.

The expert estimates the cost of the different modules or subsystems and then

combines them to arrive at the overall estimate.

40

However, this technique is subject to human errors and individual bias. An

expert making an estimate may not have experience and knowledge of all

aspects of a project. The advantage of expert judgment is the estimation made

by a group of experts. Estimation by a group of experts minimizes factors such

as lack of familiarity with a particular aspect of a project, personal bias.

 Delphi Cost Estimation

Delphi cost estimation approach tries to overcome some of the short comings of

the expert judgment approach. Delphi estimation is carried out by a team

consisting of a group of experts and a coordinator. The Delphi technique can be

adapted to software cost estimation in the following manner:

 A coordinator provides each estimator with the software requirement

specification (SRS) document and a form for recording a cost estimate.

 Estimators study the definition and complete their estimates

anonymously and submit it to the coordinator. They may ask questions to

the coordinator, but they do not discuss their estimates with one another.

 The coordinator prepares and distributes a summary of the estimator’s

responses and includes any unusual rationales noted by the estimators.

 Based on this summary, the estimators re-estimate. This process is

iterated for several rounds. No group discussion is allowed during the

entire process.

 COCOMO: A Heuristic Estimation Technique

COCOMO was proposed by Boehm. Boehm postulated that any software

development project can be classified into one of the following three categories

based on the development complexity: organic, semidetached, and embedded.

41

 Organic: In the organic mode the project deals with developing a well-

understood application program. The size of the development team is

reasonably small, and the team members are experienced in developing

similar types of projects.

 Semidetached: In the semidetached mode the development team consists

of a mixture of experienced and inexperienced staff. Team members may

have limited experience on related systems but may be unfamiliar with

some aspects of the system being developed.

 Embedded: In the embedded mode of software development, the project

has tight constraints, which might be related to the target processor and

its interface with the associated hardware.

According to Boehm, software cost estimation should be done through three

stages: basic COCOMO, intermediate COCOMO, and complete COCOMO.

Basic COCOMO

The basic COCOMO model gives an approximate estimate of the project

parameters. The basic COCOMO estimation model is given by the following

expressions:

Effort = a1 × (KLOC)a2 PM Tdev

= b1 × (Effort) b2 Months

Where

(i) KLOC is the estimated size of the software product expressed in Kilo Lines

of Code,

(ii) a1, a2, b1, b2 are constants for each category of software products,

(iii) Tdev is the estimated time to develop the software, expressed in months,

(iv) Effort is the total effort required to develop the software product, expressed

in person months (PMs).

42

Intermediate COCOMO

The basic COCOMO model allowed for a quick and rough estimate, but it

resulted in a lack of accuracy. Basic model provides single-variable (software

size) static estimation based on the type of the software. A host of the other

project parameters besides the product size affect the effort required to develop

the product as well as the development time.

Intermediate COCOMO provides subjective estimations based on the size of the

software and a set of other parameters known as cost directives. This model

makes computations on the basis of 15 cost drivers based on the various

attributes of software development. Cost drivers are used to adjust the nominal

cost of a project to the actual project environment, hence increasing the

accuracy of the estimate.

The cost drivers are grouped into four categories:

 Product attributes

 Computer attributes

 Personnel attributes

 Development environment

Product

The characteristics of the product data considered include the inherent

complexity of the product, reliability requirements of the product, database size

etc.

Computer

The characteristics of the computer that are considered include the execution

speed required, storage space required etc.

Personnel

The attributes of development personnel that are considered include the experience

level of personnel, programming capability, analysis capability etc.

43

Development Environment

The development environment attributes capture the development facilities

available to the developers.

Complete COCOMO / Detailed COCOMO

Basic and intermediate COCOMO model considers a software product as a

single homogeneous entity. Most large system are made up of several smaller

subsystem. These subsystems may have widely different characteristics. Some

subsystem may be considered organic type, some embedded and some

semidetached. Software development is executed in different phases and hence

the estimation of efforts and schedule of deliveries should be carried out phase

wise. Detailed COCOMO provides estimated phase-wise efforts and duration of

phase of development.

Detailed COCOMO classifies the organic, semidetached, and embedded project

further into small, intermediate, medium and large-size projects based on the

size of the software measured in KLOC. Based on this classification, the

percentage of efforts and schedule have been allocated for different phase of the

project, viz. software planning, requirement analysis, system designing, detailed

designing, coding, unit testing, integration and system testing. Total effort is

estimated separately. This approach reduces the margin of error in the final

estimate.

 Effect of Schedule Change on Cost

Only few number of engineers are needed at the beginning of the project to

carry out planning and specification tasks. As the project progress and more

detailed work is required, the number of engineers reaches a peak.

44

By using the Putnam’s proposed expression for L,

K = (L3) / (Ck)
3 (td)

4

Or

K = C / (td)
4 (Since C = (L3) / (Ck)

3) is a constant)

 Where K is the total effort expended (in PM) in the product development

and L is the product size in KLOC.

 td is the time required to develop the software.

 Ck is the state of technology constant and reflects constraints that impede

the progress of the programmer.

From the expression, it can be observed that when the schedule of the project is

compressed, the required effort increases.

The Putnam estimation model works reasonably well for very large systems,

but seriously overestimates the effort on medium and small systems.

 Jensen Model for Staffing Level Estimation

Jensen model is very similar to Putnam model. However, it attempts to soften

the effect of schedule compression on effort to make it applicable to smaller and

medium sized projects. Jensen proposed the equation:

L=Cte td K
1/2

Where Cte is the effective technology constant, td is the time to develop the

software, and K is the effort needed to develop the software.

 Tools for Scheduling

Scheduling the project tasks is an important project planning activity.

Scheduling involves deciding which tasks would be taken up when. In order to

schedule the project activities, a software project manager needs to do the

following.

45

i) Identify all the tasks necessary to complete the project.

ii) Break down larger tasks into a logical set of small activates which would be

assigned to different engineers.

iii) Create the work break down structure and to find the dependency among the

activates. Dependency among the different activates determines the order in

which the different activates would be carried out.

iv) Establish the most likely estimates for the time durations necessary to

complete the activities.

v) Resources are allocated to each activity. Resource allocation is typically

done using a Gantt chart.

vi) Plan the starting and ending dates for various activities. The end of each

activity is called a milestone.

Vii) Determine the critical path.

A critical path is the chain of activities that determine the duration of the project.

The first step in scheduling a software project involves identifying all the tasks

necessary to complete the project. Next, the large tasks are broken down into

logical set of small activities which would be assigned to different engineers.

After the project manager has broken down the task and created the work

breakdown structure, he has to find the dependency among the activities.

Dependency among the different activities determines the order in which the

different activities would be carried out. If an activity A requires the results of

another activity B, then activity A must be scheduled after activity B. The task

dependencies define a partial ordering among tasks.

46

Once the activity network representation has been worked out, resources are

allocated to each activity. Resource allocation is typically done using a Gantt

chart. After resource allocation is done, a Project Evaluation and Review

Technique chart representation is developed. The PERT chart representation is

suitable for program monitoring and control.

Use of Work Breakdown Structure, Activity Networks, Gantt

Chart and PERT in Scheduling

Work Breakdown Structure

Most project control techniques are based on breaking down the goal of the

project into several intermediate goals. Each intermediate goal can be broken

down further. This process can be repeated until each goal is small enough to be

well understood.

Work breakdown structure (WBS) is used to decompose a given task set

recursively into small activities. In this technique, one builds a tree whose root

is labelled by the problem name. Each node of the tree can be broken down into

smaller components that are designated the children of the node. This “work

breakdown” can be repeated until each leaf node in the tree is small enough to

allow the manager to estimate its size, difficulty and resource requirements.

The goal of a work breakdown structure is to identify all the activities that a

project must undertake.

47

Fig. 2.3 Work breakdown structure of an MIS problem

The task is broken down into a large number of small activities; these activities

can be distributed to a large number of engineers. Thus it becomes possible to

develop the product faster. Therefore, to be able to complete a project in the

least amount of time the manager needs to break large tasks into smaller

subtasks, expecting to find more parallelism. In scheduling the manager decide

the order in which to do these tasks.

Two general scheduling techniques are Gantt Charts and PERT Charts.

Activity Networks and Critical Path Method

Work Breakdown Structure representation of a project is transformed into an

activity network by representing the activities identified in work breakdown

structure along with their interdependencies. An activity network shows the

different activities making up a project, their estimated durations and

interdependencies.

MIS

Application

Requirements

Specification
Design Code Test Document

Data base

part

Graphical

user

interface

part

Data base

part

Graphical

user

interface

part

48

Requirements

specification 15

Design

database part

45

Code database

part 120

Fig. 2.4 Activity Network representation of the MIS problem

Managers can estimate the time duration for the different tasks in several ways.

A path from the start node to the finish node containing only critical tasks is

called a critical path.

 Critical Path Method

 From the activity network Fig.2.4 representation, the following

analysis can be made:

 The minimum time (MT) to complete the project is the maximum of all

paths from start to finish.

 The earliest start (ES) time of a task is the maximum of all paths from the

start to this task.

 The latest start (LS) time is the difference between MT and the maximum

of all paths from this task to the finish.

 The earliest finish time (EF) of a task is the sum of the earliest start time

of the task and the duration of the task.

Design GUI

part 30 Code GUI

part 45

Write user

manual 60

Finish

Integration

and test 120

49

 The latest finish (LF) time of a task can be obtained by subtracting

maximum of all paths from this task to finish from MT.

 The slack time (ST) is LS – EF and equivalently can be written as LF –

EF. The slack time is the total time for which a task may be delayed

before it would affect the finish time of the project. The slack time

indicates the flexibility in starting and completion of tasks.

 A critical task is one with a zero slack time.

 A path from the node to the finish node containing only critical tasks is

called a critical path.

 The above parameters for different tasks for the MIS problem (Fig.2.4)

are shown in the following table.

Task ES EF LS LF ST

Specification Part 0 15 0 15 0

Design Database Part 15 60 15 60 0

Design GUI Part 15 45 90 120 75

Code Database Part 60 165 60 165 0

Code GUI Part 45 90 120 165 75

Integrate and Test 165 285 165 285 0

White User Manual 15 75 225 285 210

The critical paths are all the paths whose duration equals MT. The critical path

in Fig.2.4 is shown with thick arrow lines.

Gantt Chart

Gantt charts are a project control technique that can be used for several purposes

including scheduling, budgeting and resource planning. Gantt Charts are mainly

used to allocate resources to activities. A Gantt chart is a

50

special type of bar chart where each bar represents an activity. The bars are

drawn against a time line. The length of each bar is proportional to the duration

of the time planned for the corresponding activity.

Fig. 2.5 Gantt Chart Representation of the MIS Problem

In the Gantt Chart the bar consists of a write part and a shaded part. The shaded

part of the bar shows the length of time each task is estimated to take. The white

part shows the slack time, that is the latest time by which a task must be

finished.

PERT (Project Evaluation and Review Technique) Charts

PERT controls time and cost during the project and also facilities finding the

right balance between completing a project on time and cost during the project

and also facilitates finding the right balance between completing a project on

time and completing it within a budget.

51

A PERT Chart is a network of boxes (or circles) and arrows. The boxes

represent activities and the arrows are used to show the dependencies of

activities on one another. The activity at the head of an arrow cannot start until

the activity at the tail of the arrow is finished. The boxes in a PERT Chart can

be decorated with starting and ending dates for activities. PERT Chart is more

useful for monitoring the timing progress of activities.

Fig.2.6 PERT Chart representation of the MIS problem

PERT Chart shows the interrelationship among the tasks in the project and

identifies critical path of the project.

 Organisation Structure

There are essentially two broad ways in which a software development

organization can be structured: function format and project format. In the

project format, the development staff are divided based on the project for which

they work. In the functional format, the development staff are divided based on

the functional group to which they belong to . The different projects bellow

engineers from functional groups for specific phases of the projects and return

them to their functional group upon compl etion of the phase.

Preparation of

software

requirement

specification

GUI

design

Design

Database

design

Code GUI

part

Integration

and testing

Code

database

part

Finish

52

Functional Group

Project

Team n

Project

Team 1

Top Management

Requirements

Design

Coding

Testing

Project

Management

Maintenance

In the functional format, different teams of programmers perform different

phases of a project.

For example, one team might do the requirements specification, another do the

design, and so on. The partially completed product passes from one team to

another as the product evolves. Therefore, the functional format requires

considerable communication among the different teams because the work of one

team must be clearly understood be team must be clearly understood by the

subsequent teams working on the project.

In the project format, a set of engineers are assigned to the project at the start of

the project and they remain with the project till the completion of the project.

Thus, the same team carries out all the life cycle activities. Obviously, the

functional format requires more communication among teams than the project

format, because one team must understand the work done by the previous

teams. The main advantages of a functional organization are:

Fig.2.7 Functional

organization

Project

Team n

Project

Team 1

Top Management

Fig. Project Organization

53

 Ease of staffing

 Production of good quality documents

 Job specialization

 Efficient handling of the problems associated with manpower turnover

The functional organisation allows engineers to become specialists in their

particular roles, e.g. requirements analysis, design, coding, testing, maintenance

etc. the functional organisation also provides an efficient solution to the staffing

problem. A project organisation structure forces the manager to take in almost a

constant number of engineers for the entire duration of the project.

 Team Structure

Team structures address the issue of organization of the individual teams. Three

format team structures are:

 Chief programmer

 Democratic

 Mixed team organization

Chief Programmer Team

In this organization, a senior engineer provides the technical leadership and is

designated as the chief programmer. The chief programmer partitions the task

into small activities and assigns them to the team members.

54

(Software engineers)

Fig. 2.8 Chief programmer team structure

The chief programmer provides an authority. The chief programmer team leads

to lower team morale, since the team members work under the constant

supervision of the chief programmer. This also inhibits their original thinking.

The chief programmer team is probably the most efficient way of completing

and small projects. The chief programmer team structure works well when the

task is within the intellectual grasp of a single individual.

Democratic Team

The democratic team structure does not enforce any formal team hierarchy.

Typically a manager provides the administrative leadership. At different times,

different members of the group provide technical leadership.

Project Manager

55

Software engineer

Communication pat

h

Fig.2.9 Democratic team structure

The democratic organization leads to higher morale and job satisfaction. The

democratic team structure is appropriate for less understood problems, since a

group of engineers can invent better solutions than a single individual as in a

chief programmer team. A democratic team structure is suitable for projects

requiring less than five or six engineers and for research-oriented projects. The

democratic team organization encourages egoless programming as programmers

can share and review one another’s work.

Mixed Control Team Organization

The mixed team organization draws upon the ideas from both the democratic

organization and the chief programmer organization. This team organization

incorporates both hierarchical reporting and democratic set-up.

56

Communication

Fig.2.10 Mixed team structure

The mixed control team organization is suitable for large team sizes. The

democratic arrangement at the senior engineers level is used to decompose the

problem into small parts. Each democratic set-up at the programmer level

attempts to find solution to a single part. This team attempts to find solution to a

single part. This team structure is extremely popular and is being used in many

software development companies.

Project manager

Reporting

Senior engineers

Software

engineers

57

 Importance of Risk Identification, Risk Assessment and Risk

Containment with reference to Risk Management

Risk management is an emerging area that aims to address the problem of

identifying and managing the risk associated with a software project. Risk in a

project is the possibility that the defined goals are not met. The basic motivation

of having risk management is to avoid heavy looses.

Risk is defined as an exposure to the chance of injury or loss. That is risk

implies that there is possibility that something negative may happen. In the

content of software project, negative implies that there is an adverse effect on

cost, quantity or schedule. Risk management aims at reducing the impact of all

kinds of risk that might affect a project.

Risk management consist of three essential activities:

 Risk identification

 Risk assessment

 Risk containment

Risk Identification

A project can get affected by a large variety of risks. Risk identification

identifies all the different risks for a particular project. In order to identify the

important risks which might affect a project, it is necessary to categorize risk in

to different classes. There are three main categories of risks which can affect a

software project are:

 Project Risks

Project risks concern various forms of budgetary, schedule, personal, resource

and customer- related problems. Software is intangible, it is very difficult to

monitor and control a software project.

 Technical Risks

58

Technical risk concern potential design, implementation, interfacing, testing,

and maintenance problem. Technical risks also include incomplete

specification, changing specification, technical uncertainly. Most technical risks

occur due the development teams insufficient knowledge about the product .

 Business risks

Business risks include risks of building an excellent product that no one wants,

losing budgetary or personal commitments etc.

Risks Assessment

The goal of risks assessment is to rank the risks so that risk management can

focus attention and resources on the more risks items. For risks assessment,

each risk should be rated in two ways:

a> The likelihood of a coming true (r)

b> The consequence of the problem associated with that risk(s)

The priority of each risk can be computed as

p= r*s

Where p is the priority with which the risk must be handled, r is the probability

of the risk becoming true and s is the severity of damaged caused due to the risk

becoming true .

Risk Containment

After all the identified risk of a project is assessed, plans must be made to

contain the most damaging and the most likely risks. Three main strategies used

for risks containment are:

 Avoid the risk

 Risk reduction

 Transfer the risk

59

Avoid the Risk

This may take several forms such as discussions with the customer to reduce the

scope of the work and giving incentives to engineers to avoid the risk of

manpower turnover etc.

Transfer the Risk

This strategy involves getting the risky component develop by a third party or

buying insurance cover etc.

Risk Reduction

This involves planning ways to contain the damage due to a risk.

Risk leverage = (risk exposure before reduction – risk exposure after reduction)

/ (Cost of reduction)

60

Chapter-3

Requirement Analysis and specification

Contents

Requirements gathering and analysis
Software Requirements Specification
Contents of SRS
Characteristics of Good SRS
Organization of SRS
Techniques for representing complexing logic

 Need for Requirement Analysis

Requirement analysis is a Software engineering task that bridges the gap

between system level requirements engineering and software design.

Requirement analysis provides software designer with a representation of

system information, function, and behavior that can be translated to data,

architectural, and component-level designs.

Software requirement analysis may be divided into five areas of effort:

 Problem recognition

 Evaluation and synthesis

 Modeling

 Specification

 Review

61

Steps in Requirements Elicitation for Software: Initiating the

Process, Facilitated Application Specification Techniques, Quality

Function Deployment

Before requirements can be analyzed, modeled or specified they must be

gathered through an elicitation process.

Initiating the Process

• The most commonly used requirements elicitation technique is to conduct

a meeting or interview. Customer meetings are the most commonly used

technique.

• Use context free questions to find out customer's goals and benefits,

identify stakeholders, gain understanding of problem, determine customer

reactions to proposed solutions, and assess meeting effectiveness.

Facilitated Application Specification Techniques

• Meeting held at neutral site, attended by both software engineers and

customers.

• Rules established for preparation and participation.

• Agenda suggested to cover important points and to allow for

brainstorming.

• Meeting controlled by facilitator (customer, developer, or outsider).

• Goal is to identify problem, propose elements of solution, negotiate

different approaches, and specify a preliminary set of solution

requirements.

62

Quality Function Deployment (QFD)

Quality function deployment is a quality management technique that translates

the needs of the customer into technical requirements for software. Quality

function deployment identifies three types of requirements:

 Normal requirements: The objectives and goals that are stated for a

product or system during meetings with the customer.

 Expected requirements: These requirements are implicit to the

product or system (customers assumes will be present in a

professionally developed product without having to request them

explicitly).

 Exciting requirements: These features that go beyond the customer's

expectations and prove to be very satisfying when they are present.

Function deployment is used to determine the value of each function that is

required for the system. Information deployment identifies both the data objects

and events that the system must consume and produce. Task deployment

examines the behavior of the system or product within the context of its

environment. Value analysis used to determine the relative priority of

requirements during function, information, and task deployment.

 Principles of Analysis

All analysis methods are related by a set of operational principles:

• The information domain of the problem must be represented and

understood.

• The functions that the software is to perform must be defined.

• Software behavior must be represented

63

• Models depicting information function and behavior must be

partitioned in a hierarchical manner that uncovers detail.

• The analysis process should move from the essential information toward

implementation detail.

 Software Prototyping

The prototyping paradigm can be either close-ended or open-ended. The close-

ended approach is called throwaway prototyping and an open-ended approach

called evolutionary prototyping.

 Prototyping Approach

Throwaway prototyping: Prototype only used as a demonstration of product

requirements.

Evolutionary prototyping uses the prototype as the first part of an analysis

activity that will be continued into design and construction.

The customer must interact with the prototype, it is essential that:

a) Customer resources must be committed to evaluation and refinement of

the prototype.

b) Customer must be capable of making requirements decisions in a timely

manner.

 Prototyping Tools and Methods

Three generic classes of methods and tools are:

• Fourth generation techniques: Fourth generation techniques (4GT)

tools allow software engineer to generate executable code quickly.

• Reusable software components: Assembling prototype from a set of

existing software components.

• Formal specification and prototyping environments can interactively

create executable programs from software specification models.

64

 Software Requirement Specification Principle

Specification principles are:

• Separate functionality from implementation.

• Develop a behavioral model that describes functional responses to all

system stimuli.

• Define the environment in which the system operates and indicate how

the collection of agents will interact with it.

• Create a cognitive model rather than an implementation model

• Recognize that the specification must be extensible and tolerant of

incompleteness.

• Establish the content and structure of a specification so that it can be

changed easily.

 SRS Document

The requirements analysis and specification phase starts once the feasibility

study phase is completed and the project is found to be financially sound and

technically feasible. The goal of the requirement analysis and specification

phase is to clearly understand the customer requirements and to systematically

organize these requirements in a specification document. This phase consists of

two activities:

 Requirements gathering and analysis.

 Requirements specification

System analysts collect data pertaining to the product to be developed and

analyze these data to conceptualize what exactly needs to be done. The analyst

starts the requirements gathering and analysis activity by the collecting all

information from the customer which could be used to develop the requirements

of the system. The analyst then analyzes the collect

65

information to obtain a clear and thorough understanding of the product to be

developed.

Two main activities involved in the requirements gathering and analysis phase

are:

 Requirements Gathering: The activity involves interviewing the end- users

and customers and studying the existing documents to collect all possible

information regarding the system.

 Analysis of Gathered Requirements : The main purpose of this activity is

to clearly understand the exact requirements of the customer. The analyst

should understand the problems:

 What is the problem?

 Why is it important to solve the problem?

 What are the possible solutions to the problem?

 What exactly are the data input to the system and what exactly the data

output required of the system?

 What are the complexities that might arise while solving the problem?

After the analyst has understood the exact customer requirements, he proceeds

to identify and resolve the various requirements problems.

There are three main types of problems in the requirement that analyst

needs to identify and resolve:

 Anomaly

 Inconsistency

 Incompleteness

Anomaly: An anomaly is an ambiguity in the requirement. When a requirement

is anomalous, several interpretation of the requirement are possible.

66

Example: In a process control application, a requirement expressed by one user

is that when the temperature becomes high, the heater should be switched off.

(Words such as high, low, good, bad etc, are ambiguous without proper

quantification). If the threshold above which the temperature can be considered

to be high is not specified, then it can be interpreted differently by different

people.

Inconsistency: Two requirements are said to be inconsistent, if one of the

requirements contradicts the other two-end user of the system give inconsistent

description of the requirement.

Example: For the case study of the office automation, one of the clerk described

that a student securing fail grades in three or more subjects should have to

repeat the entire semester. Another clerk mentioned that there is no provision

for any student repeat a semester.

Incompleteness: An incomplete set of requirements is one in which some

requirements have been overlooked.

Software Requirement Specification

After the analyst has collected all the required information regarding the

software to be developed and has removed all incompleteness, inconsistencies

and anomalies from the specification, analyst starts to systematically organize

the requirements in the form of an SRS document. The SRS document usually

contains all the user requirements in an informal form.

Different People need the SRS document for very different purposes. Some of

the important categories of users of the SRS document and their needs are as

follows.

 Users, customers and marketing personnel

The goal of this set of audience is to ensure that the system as describe

in the SRS document will meet their needs.

67

 The software developers refer to the SRS document to make sure that

they develop exactly what is required by the customer.

 Test Engineers: Their goal is to ensure that the requirements are

understandable from a functionality point of view, so that they can test

the software and validate its working.

 User Documentation Writers: Their goal in reading the SRS document is

to ensure that they understand the document well enough to be able to

write the users’ manuals.

 Project Managers

They want to ensure that they can estimate the cost of the project easily

by referring to be SRS document and that it contains all information

required to plan the project.

 Maintenance Engineers

The SRS document helps the maintenance engineers to understand the

functionalities of the system. A clear knowledge of the functionalities can

help them to understand the design and code.

Contents of the SRS Document

An SRS document should clearly document:

 Functional Requirements

 Nonfunctional Requirements

 Goals of implementation

The functional requirements of the system as documented in the SRS

document should clearly describe each function which the system would

support along with the corresponding input and output data set.

68

Fig. 3.1 Contents of SRS Document

The non-functional requirements also known as quality requirements. The non-

functional requirements deal with the characteristics of the system that cannot

be expressed as functions.

Examples of nonfunctional requirements include aspects concerning

maintainability, portability and usability, accuracy of results. Non-functional

requirements arise due to user requirements, budget constraints, organizational

policies and soon.

The goals of implementation part of the SRS document gives some general

suggestion regarding development. This section might document issues such as

revisions to the system functionalities that may be required in the future, new

devices to be supported in the future.

 Characteristics and Organization of SRS Document

Characteristics of SRS document

Concise: The SRS document should be concise, unambiguous, consistent and

complete. Irrelevant description reduced readability and also increases error

possibilities.

Structured: The SRS document should be well-structured. A well-structured

document is easy to understand and modify.

69

Block-box View: It should specify what the system should do. The SRS

document should specify the external behavior of the system and not discuss the

implementation issues. The SRS should specify the externally visible behavior

of the system. [For this reason the SRS document is called the block-box

specification of a system.]

Conceptual Integrity : The SRS document should exhibit conceptual integrity so

that the reader can easily understand the contents.

Verifiable: All requirements of the system as documented in the SRS document

should be verifiable if and only if there exists some finite cost- effective process

with which a person of machine can check that the software meets the

requirement.

Modifiable : The SRS is modifiable if and only if its structure and style are such

that any changes to the requirements can be made easily, completely and

consistently while retaining the structure and style.

Organization of the SRS Document

Organization of the SRS document and the issues depends on the type of the

product being developed. Three basic issues of SRS documents are: functional

requirements, non functional requirements, and guidelines for system

implementations. The SRS document should be organized into:

1. Introduction

(a) Background

(b)Overall Description

(c)Environmental Characteristics

(i)Hardware

(ii)Peripherals

(iii)People

 Goals of implementation Functional

requirements

71

Nonfunctional Requirements

Behavioural Description

(a) System States

(b)Events and Actions

The `introduction’ section describes the context in which the system is being

developed, an overall description of the system and the environmental

characteristics. The environmental characteristics subsection describes the

properties of the environment with which the system will interact.

72

Chapter-4

Software Design

Contents

What is a Good S/W design

Cohesion and coupling

Neat arrangement

S/W Design approaches

Structured analysis

Data Flow Diagrams

Symbols used in DFD

Designing DFD

Developing DFD model of a system

Shortcomings of DFD

Structured design

Principles of transformation of DFD to Structure Chart

Transform analysis and Transaction Analysis
Design Review

 Importance of Software Design

Software design aims to plan and create a blueprint for the implementation of

the software. The main aim and focus of the software design process is to cover

the gap between understanding the specification and implementing them in the

software. Software design transforms the SRS document into implementable

form using a programming language. The design representations are used to

describe how the system is to be structured and developed to meet the

specification in the best manner.

The following items are designed and documented during the design phase.

 Different modules in the solution should be cleanly identified. Each

module should be named according to the task it performs.

• The control a relationship exists among various modules should be

73

identified in the design document. The relationship is also known as the call

relationship.

• Interface among different modules. The interface among different

modules identifies the exact data items exchanged among the modules.

• Data structures of the individual modules.

• Algorithms required to implement the individual modules.

 Design Principles and Concepts

Design Principles

Software design is both a process and a model. The design process is a sequence

of steps that enable the designer to describe all aspects of the software to be

built. Basic design principles are:

o The design process should not suffer from “tunnel vision”.

o The design should be traceable to the analysis model.

o The design should not reinvent the wheel.

o The design should “minimize the intellectual distance” between the

software and the problem in the real world.

o The design should exhibit uniformity and integration.

o The design should be structured to accommodate change.

o The design should be structured to degrade gently.

o Design is not coding.

o The design should be assessed for quality.

o The design should reviewed to minimize conceptual errors.

Design Concepts

Abstraction: Each step in the software engineering process is a refinement in the

level of abstraction of the software solution.

- Data abstractions: a named collection of data

74

- Procedural abstractions: A named sequence of instructions in a

specific function

- Control abstractions: A program control mechanism without

specifying internal details.

The design process takes the SRS documents as the input and is dedicated to

plan for implementation of the software. The design activities are classified into

two parts.

 Preliminary(or high-level)design

 Detailed design

Preliminary Design / High-Level Design

Through high-level design, a problem is decomposed into a set of modules, the

control relationships among various modules identified and also the interfaces

among various modules are identified. The outcome of high-level design is

called the program structure or the software architecture many different types of

notations have been used to represent a high-level design. A popular way is to

use a tree-like diagram called the structured chart to represent the control

hierarchy in high-level design. Another popular design representation technique

called UML that is being used to document object- oriented design. Once the

high-level design is complete, detailed design is undertaken.

Detailed Design

During detailed design, the data structure and the algorithms of different

modules are designed. The outcome of the detailed design stage is usually

known as the module specification document.

75

What is a Good Software Design

There is no unique way to design a system. Using the same design

methodology, different engineers can arrive at very different design solutions.

Even the same engineer can work out many different solutions to the same

problem.

The definition of “a good software design” can vary depending on the

application for which it is being designed. For example, the memory size used

up by a program may be an important issue to characterize a good solution for

embedded software development-since embedded applications are often

required to be implement using memory of limited size due to space, cost or

power consumption constraints. For embedded applications, factors such as

design comprehensibility may take a back seat while judging the goodness of

design. For embedded applications, one may sacrifice design comprehensibility

to achieve code compactness. Therefore, the criteria used to judge how good a

given design solution is can vary widely depending on the application. The

goodness of a design is dependent on the targeted application. Different

characteristics of a software design are:

Correctness: A good design should correctly implement all the functionalities

of the system.

Understandability: A good design should be easily understandable.

Efficiency: A good design solution should adequately address resource, time

and cost optimization issues.

Maintainability: A good design should be easy to change.

In order to facilitate understandability of a design, the design should have the following

features:

 It should assign consistent and meaningful names for various design

components.

76

 The design should be modular. The term modularity means that it should

use a cleanly decomposed set of modules.

It should neatly arrange the modules in a hierarchy, e.g. tree-like diagram.

Modularity

A modular design achieves effective decomposition of a problem. It is a basic

characteristic of any good design solution. Decomposition of a problem into

modules facilitates the design by taking advantage of the divide and conquers

principle. If different modules are independent of each other, then each module

can be understood separately. This reduces the complexity of the design

solution.

Clean Decomposition

The modules in a software design should display high cohesion and low

coupling. The modules are more or less independent of each other.

Layered Design

In a layered design, the modules are arranged in a hierarchy of layers. A module

can only invoke functions of the modules in the layer immediately below it. A

layer design can make the design solution easily understandable. A layer design

can be considered to be implementing control abstraction, since a module at a

lower layer is unaware of the higher layer modules.

 Cohesion and Coupling

A good software design implies clean decomposition of the problem into

modules and thereafter the neat arrangement of these modules. The primary

characteristics of a neat module decomposition are high cohesion and low

coupling. Cohesion is a measure of the functional strength of a module where as

the coupling between two modules is a measure of the degree of

interdependence or interaction between the two modules. A modules having

77

high cohesion and low coupling is said to be functionally independent of other

modules. A cohesive module performs a single task or function.

Cohesion

Cohesion is a measure of the strength of the relationship between

responsibilities of the components of a module. A module is said to be highly

cohesive if its components are strongly related to each other by some means of

communication or resource sharing or the nature of responsibilities. High

cohesion facilitates execution of a task by maximum intra-modular

communication and least inter-module dependencies. It promotes

independencies between different modules.

Error isolation

Functional independence reduces error propagation. If a module is functionally

independent, its degree of interaction with other modules is less. Therefore, any

error existing in a module would not directly affect the other modules.

Scope for Reuse

Reuse of a module becomes possible, because each module does some well-

defined and precise functions and the interface of the module with other module

is simple and minimal. Therefore a cohesive module can be easily taken out and

be reused in a different program.

Understandability

Complexity of the design is reduced, because different modules are more or less

independence of each other and can be understood in isolation.

78

 Classification of Cohesiveness

There are seven types or levels of cohesion.

Coincidental Logical temporal Procedural communication sequential functional

Low High

Fig. 4.1 Classification of Cohesion

Coincidental is the worst type of cohesion and functional is the best cohesion.

Coincidental Cohesion

A module is said to have coincidental cohesion, if it performs a set of tasks that

relate to each other very loosely, if at all. In this case the module contains a

random collection of functions.

The different functions of the module carry out. The different unrelated

activities are issuing of librarian leave request.

Logical Cohesion

A module is said to be logically cohesive, if all elements of the module perform

similar operations. For example, consider a module that consists of a set of print

functions to generate various types of output reports such as salary slips annual

reports etc.

Temporal Cohesion

When a module contains functions that are related by the fact that all the

functions must be executed in the same time span, the module is said to exhibit

temporal cohesion. For example, consider the situation: when a computer is

booted, several functions need to be performed.

These include initialization of memory and devices, loading the operating

system etc. When a single module performs all these tasks, then the module can

be said to exhibit temporal cohesion.

79

Procedural Cohesion

A module is said to possess procedural cohesion, if the set of functions of the

module are executed one after the other, though these functions may work

entirely different purposes and operate on different data. For example, in an

automated teller machine(ATM),member-card validation is followed by

personal validation by personal identification number and following this, the

request option menu is displayed.

Communication Cohesion

A module is said to have communicational cohesion, if all functions of the

module refer to or update the same data structure.

Sequential Cohesion

A module is said to possess sequential cohesion, if the different functions of the

module execute in a sequence, and the output from one function is input to the

next in the sequence.

Functional Cohesion

A module is said to possess functional cohesion, if different function of the

module cooperate to complete a single task.

The functions issue-book (), return-book (), query-book () and find borrower ()

together manage all activities concerned with book lending.

 Classification of Coupling

The coupling between two modules indicates the degree of interdependence

between modules. Two modules with high coupling are strongly interconnected

and thus dependent on each other. Two modules with low coupling are not

dependent on one another.”Uncoupled” modules have no interconnections, they

are completely independent.

80

Fig. 4.2 Uncoupled: No Dependencies

Fig. 4.3 Loosely coupled: Fig. 4.4 Highly coupled:

some dependencies many dependencies

A good design will have low coupling. Coupling is measured by the number of

interconnections between modules. Coupling increases as the number of calls

between modules increases.

Different types of coupling are:

Data Coupling

It is a type of loose coupling and combines modules by passing some

parameters from one module to another. The parameters that are passed are

usually atomic data type of programming language. Eg an integer, a float, a

character etc. This data item should be problem related and not used for control

purposes.

81

Data Stamp Control Common Content

Fig. 4.5 Classification of Coupling

Stamp Coupling

Two modules are stamp coupled, if they communicate using a composite data

item such as a structure in C.

Control Coupling

Module A and B are said to be control coupled if they communicate by passing

of control information.

Common Coupling

Two modules are common coupled, if they share some global data items.

Content coupling

Content coupling exist between two modules, if their code is shared.eg. a

branch from one module into another module.

 S/W Design Approaches

Two different approaches to software design are: Function-oriented design

and Object-oriented design

Function oriented design

Features of the function-oriented design approach are:

Top-down decomposition

In top-down decomposition, starting at a high-level view of the system, each

high-level function is successfully refined into more detailed functions.

Ex Consider a function create-new-library member which essentially creates

82

the record for a new member, assigns a unique membership number to him and

prints a bill towards his membership charge. This function may consists of the

following subfunctions:

 assign-membership-number

 create-member-record

 print-bill

Each of these sub functions may be split into more detailed sub functions

and so on.

Object Oriented Design

In the object-oriented design approach, the system is viewed as a collection of

objects. The system state is decentralized among the objects and each object

manages its own state information.

Objects have their own internal data which define their state. Similar objects

constitute a class. Each object is a member of some class. Classes may inherit

features from a super class. Conceptually, objects communicate by message

passing.

 Structured Analysis Methodology

The aim of structured analysis activity is to transform a textual problem

description into a graphic model. Structured analysis is used to carry out the

top-down decomposition of the set of high-level functions depicted in the

problem description and to represent them graphically. During structured

design, all functions identified during structured analysis are mapped to a

module structure. Structure analysis technique is based on the following

principles:

 Top-down decomposition approach

 Divide and conquer principle. Each function is decomposed

independently

83

 Graphical representation of the analysis results using Data Flow

Diagram (DFD).

 Use of Data Flow Diagram

The DFD also known as bubble chart is a simple graphical formalism that can

be used to represent a system in terms of the input data to the system, various

processing carried out on these data & the output data generated by the system.

DFD is a very simple formalism – it is simple to understand and use. A DFD

model uses a very limited number of primitive symbols to represents the

functions performed by a system and the dataflow among these functions.

 Lists the Symbols used in DFD

Five different types of primitive symbols used for constructing DFDs. The

meaning of each symbol is

Functional symbol () :A function is represented is using a circle.

External entity symbol () : An external entities are essentially

those physical entities external to the software system which interact with the

system by inputting data to the system or by consuming the data produced by

the system.

Data flow symbol (): A directed arc or an arrow is used as a data flow

symbol.

Data store symbol () : A data store represents a logical file. It is

represented using two parallel lines.

Output symbol () : The output symbol is used when a hard copy is

produced and the user of the copies cannot be clearly specified or there are

several users of the output.

84

 Construction of DFD

A DFD model of a system graphically represent how each input data is

transformed to its corresponding output data through a hierarchy of DFDs.

A DFD start with the most abstract definition of the system (lowest level) and

at each higher level DFD, more details are successively introduced. The most

abstract representation of the problem is also called the context diagram.

Context Diagram

The context diagram represents the entire system as a single bubble. The bubble

is labelled according to the main function of the system. The various external

entities with which the system interacts and the data flows occurring between

the system and the external entities are also represented. The data input to the

system and the data output from the system are represented as incoming and

outgoing arrows.

 Z

Fig. 4.6 Context Diagram

Level 1 DFD

The level 1 DFD usually contains between 3 and 7 bubbles. To develop the

Level 1 DFD, examine the high-level functional requirements. If there are

between 3 to 7 high-level functional requirements, then these can be directly

represented as bubbles in the Level 1 DFD. We can examine the input data to

these functions and the data output by these functions and represent them

appropriately in the diagram. If a system has more than seven high-level

requirements, then some of the related requirements have to be combined and

represented in the form of a bubble in the Level 1 DFD.

X

Y

85

Decomposition

Each bubble in the DFD represents a function performed by the system. The

bubbles are decomposed into sub functions at the successive level of the DFD.

Each bubble at any level of DFD is usually decomposed between three to seven

bubbles. Decomposition of a bubble should be carried out on until a level is

reached at

Example: Student admission and examination system

This statement has three modules, namely

 Registration module

 Examination module

 Result generation module

Registration module:

An application must be registered, for which the applicant should pay the

required registration fee. This fee can be paid through demand draft or cheque

drawn from a nationalized bank. After successful registration an enrolment

number is allotted to each student, which makes the student eligible to appear in

the examination.

Examination module:

a) Assignments : Each subject has an associated assignment, which is

compulsory and should be submitted by the student before a specified

date.

b) Theory Papers : The theory papers can be core or elective. Core papers

are compulsory papers, while in elective papers students have a choice to

select.

c) Practical papers: The practical papers are compulsory and every

semester has practical papers.

Result generation Module:

The result is declared on the University’s website. This website contains

86

mark sheets of the students who have appeared in the examination of the said

semester.

Data Flow Diagram

Level 1 DFD

Fig 4.8 Level 1 DFD of Student Admission and Examination System

Student

Admission and

Examination

System

Result Generation

Examination
Student

Registration

Fig. 4.7 Level 0 DFD or Context Diagram

1

Registration

Student Detail

Application
for
Registration

Enrolment No. Alloted

3
Examination

System

Enter
Enrolment
No. and
Semester

View Report

2

Login
Enter Student

Choice 4
Student

Choice

Management

System

Subject

Choice Detail

Student

Information

Entry
5

Student

Information

Management

Administrator

Student

87

Registration Form
1.1

Verification

of Payment

Demand Draft No. ,

Cheque No.

Enrolment No.
Alloted

Student Detail

1.2

Admission

Student Administrator

Level 2 DFD

Student Registered

Fig.4.9 Level 2 DFD of Registration

Enrolment No., Semester
 User ID, Password

 2.1
Authenticated

User

User ID, Password

 User Account Detail

Fig. 4.10 Level 2 DFD of Authenticated

Administrator

Coordinator

Student

88

Mark Sheet

Marks Detail

Fig 4.11Level 2 DFD of Examination

 Limitations of DFD

 A data flow diagram does not show flow of control. It does not show

details linking inputs and outputs within a transformation. It only shows

all possible inputs and outputs for each transformation in the system.

 The method of carrying out decomposition to arrive at the successive

level and the ultimate level to which decomposition is carried out are

highly subjective and depend on the choice and judgement of the analyst.

Many times it is not possible to say which DFD representation is superior

or preferable to another.

 The data flow diagram does not provide any specific guidance as to how

exactly to decompose a given function into its subfunctions.

 Size of the diagram depends on the complexity of the logic.

3.1
Marks

Information

Management

Semester Result 3.2
Result

Report

Generation

Student Detail

89

 Structured Design

The aim of structured design is to transform the results of the structured analysis

that is a DFD representation into a structured chart. A structured chart

represents the software architecture i.e. The various modules making up the

system, the module dependency and the parameters that are passed among the

different modules. The structure chart representation can be easily implemented

using some programming language. Since the main focus in a structure chart

representation is on module structure of a software and the interaction among

the different modules. The procedural aspects are not represented in a structured

design. The basic building blocks which are used to design structure charts are:

Rectangular boxes: A rectangular box represent module

Module invocation arrows

An arrow connecting two modules implies that during program execution,

control is passed from one module to the other in the direction of the connecting

arrow.

Data flow arrows

These are small arrows appearing alongside the module invocation arrows. The

data flow arrows are annotated with the corresponding data name. The data flow

arrows represents the fact that the named data passes from one module to the

other in the direction of the arrow.

Flow Chart vs Structure Chart

A flow chart is a convenient technique to represent the flow of control in a

program. A structure chart differs from a flow chart in three principal ways:

• It is usually difficult to identify different modules of the software from its

flow chart representation.

90

• Data interchange among different modules is not represented in a flow chart.

Sequential ordering of tasks inherent in a flow chart is suppressed in a

structure chart.

 Principles of transformation of DFD to structure chart

Structure design provides two strategies to guide transformation of a DFD into a

structure chart:

Transform analysis

Transaction analysis

Normally, one starts with the level 1 DFD, transforms in into module

representation using either the transform or the transaction analysis and then

proceeds towards the lower-level DFDs. At each level of transformation, first

determine whether the transform or the transaction analysis is applicable to a

particular DFD.

Transform Analysis

Transform analysis identifies the primary functional components (modules) and

the high level input and outputs for these components. The first step in

transform analysis is to divide the DFD into three types of parts:

 Input

 Logical processing

 Output

The input portion in the DFD includes processes that transform input data from

physical to logical form. Each input portion is called an afferent branch. The

output portion of a DFD transforms output data from logical form to physical

form. Each output portion is called an efferent branch. The remaining portion of

a DFD is called central transform.

93

In the next step of transform analysis, the structure chart is derived by drawing

one functional component for the central transform and the afferent and efferent

branches.

Identifying the highest level input and output transforms require experience and

skill. The first level of structure chart is produced by representing each input

and output unit as boxes and each central transforms a single box.

In the third step of transform analysis, the structure chart is refined by adding

subfunctions required by each of the high-level functional components. Many

levels of functional components may be added. This process of breaking

functional components into subcomponents is called factoring. Factoring

includes adding read and write modules, error-handling modules, initialization

and termination process etc. The factoring process is continued until all bubbles

in the DFD are represented in the structure chart.

Transaction Analysis

A transaction allows the user to perform some meaningful piece of work. In a

transaction-driven system, one of several possible paths through the DFD is

traversed depending upon the input data item. Each different way in which input

data is handled in a transaction. The number of bubbles on which the input data

to the DFD are incident defines the number of transactions. Some transactions

may not require any input data.

For each identified transaction, we trace the input data to the output. In the

structure chart, we draw a root module and below this module we draw each

identified transaction of a module.

94

Chapter-5
User Interface Design

Contain
Characteristics of Good Interface
Basic concepts of UID

Types of User interfaces

Components based GUI development

 Rules for UID (User Interface Design)

User interface design creates an effective communication medium between a

human and a computer. User interface design begins with the identification of

user, task, and environment requirements. Once user tasks have been identified,

user scenarios are created and analyzed to define a set of interface objects and

actions.

Three Golden rules of user interface design are:

 Place the user in control.

 Reduce the user’s memory load.

 Make the interface consistent.

Place the user in control

Number of design principles that allow the user to maintain the control are:

 Define interaction modes in a way that does not force a user into

unnecessary or undesired actions.

 Provide for flexible interaction, different users have different

interaction preferences.

 Allow user interaction to be interruptible.

95

 Streamline interaction as skill levels advance and allow the interaction to

be customized.

 Hide technical internals from the casual user.

 Design for different interaction with objects that appear on the screen.

Reduce the User’s Memory Load

Principles that enable an interface to reduce the user’s memory load are:

 Reduce demand on short-term memory.

 Establish meaningful defaults.

 Define shortcuts that are intuitive.

 Disclose information in a progressive fashion.

Make the Interface Consistent

The interface should present and acquire information in a consistent fashion.

The set of design principles that help make the interface consistent are:

 Allow the user to put the current task into a meaningful context.

 Maintain consistency across a family of applications.

 Interface Design Models

The process for designing a user interface begins with the creation of different

models of system function. Four different user interface design models are:

 User model

 Design model

 Mental model

 Implementation model

A software engineer establishes a user model, the software engineer creates a

design model, the end-user develops a mental image that is often called the

user’s model or the system perception, and the implementation of the system

create a system image.

96

A design model of the entire system incorporates data, architectural, interface,

and procedural representations of the software.

The user model establishes the profile of end-users of the system. The system

perception is the image of the system that end-users carry in their heads.

 The User Interface Design Process

The design process for user interfaces is iterative and can be represented using a

spiral model. The user interface design process encompasses four distinct

activities

 User, task, and environment analysis and modelling

 Interface design

 Interface construction

 Interface validation

The initial analysis activity focuses on the profile of the users who will interact

with the system. Skill level and business understanding are recorded and

different user categories are defined. The software engineer attempts to

understand the system perception for each class of users.

Once general requirements have been defined, a more detailed task analysis is

conducted. Those tasks that the user performs to accomplish the goals of the

system are identified, described and elaborated.

The goal of interface design is to define a set of interface objects and actions

that enable a user to perform all defined tasks that meets every usability goal

defined for the system.

97

Interface Design Activities, Defining Interface Objects and

Actions and the Design Issues

Interface Design Activities

Once task analysis has been completed, all tasks required by the end-user have

been identified and the interface design activity commences. Interface design

steps can be accomplished using the following approach:

o Establish the goals and intentions for each task.

o Map each goal and intention to a sequence of specific actions.

o Specify the action sequence of tasks and subtasks.

o Indicate the state of the system.

o Define control mechanisms, that is the objects and actions available to the

user to alter the system state.

o Show how control mechanisms affect the state of the system.

o Indicate how the user interprets the state of the system from

information provided through the interface.

Defining Interface Objects and Actions

Once the objects and actions have been defined and elaborated. Interface objects

are categorized into types: source, target, and application:

 A source object (e.g. a report icon) is dragged and dropped onto a target

object (e.g. a printer icon) such as to create a hard copy of the report.

 An application object represents application-specific data that are not

directly manipulated as part of screen interaction such as a list.

After identifying objects and their actions, an interface designer performs screen

layout which involves:

 Graphical design and placement of icons

98

 Definition of descriptive screen text

 Specification and titling for windows

 Definition of major and minor menu items

Design Issues

Four common design issues are:

 System response time

 User help facilities

 Error information handling and

 Command labelling

System response time is the primary complaint for many interactive

applications. System response time is measured from the point at which the user

performs some control action until the software responds with desired output or

action. Two important characteristics of system response time are length and

variability.

Two different types of help facilities are integrated and add-on. An integrated

help facility is designed into the software from the beginning. An add-on help

facility is added to the software after the system has been built. User help

facilities must be addressed: when it is available, how it is accessed, how it is

represented to the user, how it is structured, what happens when help is exited.

An effective error message can do much to improve the quality of an interactive

system and will significantly reduce user frustration when problems do occur.

Every error message or warning produced by an interactive system should have

the following characteristics:

 The message should describe the problem in simple language that a user

can easily understand.

 The message should provide constructive advice for recovering from the

error.

99

 The message should indicate any negative consequences of the error.

 The message should be accompanied by an audible or visual cue such as

a beep, momentary flashing, or a special error colour.

 Compare the Various Types of Interface

User interfaces broadly classified into three categories:

 Command language-based interfaces

 Menu-based interfaces

 Direct manipulation interfaces

Command Language-Based Interfaces

A command language-based interface is based on designing a command

language which the user can use to issue the commands. The user is expected to

frame the appropriate commands in the language and type whenever required.

Command language-based interface allow fast interaction with the computer

and simplify the input of complex commands.

Obviously, for inexperienced users, command language-based interfaces are not

suitable. A command language-based interface is easier to develop compared to

a menu-based or a direct-manipulation interface because complier writing

techniques are well developed. One can systematically develop a command

language interface by using the standard complier writing tools: Lex and Yacc.

Usually, command language-based interfaces are difficult to learn, and require

the user to memorize the set of primitive commands. Most users make errors

while formulating commands in the command language and also while typing

them in. In a command language-based interface, all

100

interactions with the system is through a keyboard and cannot take advantage of

mouse. For inexperienced users, command language-based interface are not

suitable.

Issues in Designing a Command Language Interface

 The designer has to decide what mnemonics to use for the different

commands. The designer should try to develop meaningful

mnemonics and yet be concise to minimize the amount of typing

required.

 The designer has to decide whether the user will be allowed to

redefine the command names to suit their own preferences.

 The designer has to decide whether it should be possible to compose

primitive commands to form more complex commands. A

sophisticated command composition facility would require the syntax

and semantics of the various command composition options to be

clearly and unambiguously specified. The ability to combine

commands can be usefully exploited by experienced users, but is

quite unnecessary for inexperienced users.

Menu-based interfaces

The advantage of a menu-based interface over a command language-based

interface is that menu-based interface does not require the users to remember

the exact syntax of the commands. A menu based interface is based on

recognition of the command names. In this type of interface the typing effort is

minimal as most interactions are carried out through menu selections using a

pointing device.

Experienced users find a menu-based user interface to be slower than a

command language-based interface because they can type fast and get speed

advantage by composing different primitive commands to express complex

commands. Composing commands in a menu-based interface is not possible.

101

A major challenge in the design of a menu-based interface is that of structuring

the large number of menu choices into manageable forms.

The techniques available to structure of menu items are:

Scrolling Menu

When a full choice list cannot be displayed within the menu area, scrolling of

the menu items is required. This enables the user to view and select the menu

items that cannot be accommodated on the screen.

Fig.5.1 Font size selecting using scrolling menu

Walking Menu

Walking menu is a very commonly used menu to structure a large collection of

menu items. In this technique, when a menu item is selected, it causes further

menu items to be displayed adjacent to it in a sub-menu. A walking menu can

be successfully used to structure commands only if there are limited choices

since each adjacently displayed menu does take up screen space and the total

screen area, after all, is limited.

102

Fig.5.2 Examples of walking menu

Hierarchical Menu:

In this technique, the menu items are organized in a hierarchy or tree structure.

Selecting a menu item causes the current menu display to be replaced by an

appropriate sub-menu. Walking menu can be considered to be a form of

hierarchical menu. Hierarchical menu, on the other hand, can be used to manage

a large number of choices, but the users are likely to face navigational problems

and therefore lose track of their whereabouts in the menu tree. This probably is

the main reason why this type of interface is very rarely used.

Direct Manipulation Interfaces

Direct manipulation interfaces present the interface to the user in the form of

visual models i.e. icons. This type of interface is called as iconic interface. In

this type of interface, the user issues commands by performing actions on the

visual representations of the objects.

103

The advantages of iconic interfaces are that the icons can be recognised by the

users very easily and icons are language-independent.

 Main aspects of Graphical UI, Text based Interface

Aspects of GUI

 In a GUI, multiple windows with different information can

simultaneously be displayed on the user screen.

 Iconic information representation and symbolic information manipulation

is possible in a GUI. Symbolic information manipulation, such as

dragging an icon representing a file to a trash can for deleting, is

intuitively very appealing and the user can instantly remember it.

 A GUI usually supports command selection using an attractive and user-

friendly menu selection system.

 In a GUI, a pointing device such as a mouse or a light pen can be used for

issuing commands. The use of a pointing device increases the efficacy of

the command issue procedure.

 A GUI flip side, a GUI requires special terminals with graphics

capabilities for running and also requires special input devices such as a

mouse.

Text Based Interface

Text based interface only use text, symbols and colours available on a given text

environment. Text- based user interface can be implemented on a cheap

alphanumeric display terminal.

104

Chapter -6
Software Coding & Testing

Content
Coding

Code Review
Code walk through
 Code inspections and software Documentation
Testing

Unit testing
Black Box Testing
Equivalence class partitioning and boundary value analysis
White Box Testing
Different White Box methodologies

statement coverage branch coverage

condition coverage

path coverage

cyclomatic complexity

data flow based testing

mutation testing

Debugging approaches

Debugging guidelines

Integration Testing

Phased and incremental integration testing

System testing alphas beta and acceptance testing

Performance Testing, Error seeding
General issues associated with testing

 Coding Standards and Guidelines

Good software development organizations develop their own coding standards

and guidelines depending on what best suits their needs and types of products

they develop.

Representative coding standards are:

Rules for limiting the use of global: These rules list what types of data can be

declared global and what cannot.

Contents of the headers preceding codes for different modules: The

information contained in the headers of different modules should be standard for

an organization. The exact format in which the header information is

105

organized can also be specified. Some standard header data are:

a) Name of the module

b) Date on which the module was created

c) Author's name

d) Modification history

e) Synopsis of the module

f) Different functions supported along with their input/output parameters

g)Global variables accessed / modified by the modules

Naming conventions for global variables, local variables and constants

identifiers: A possible naming conventions can be that global variable names

always start with a capital letter, local variable names are small letters, and

constant names are always capital letters.

Error return conventions and exception handling mechanisms: The way

error conditions are reported by different functions in a program and the way

common exception conditions are handled should be standard within an

organization.

 Code Walk-Through

The main objective of code walk-through is to discover the algorithmic and

logical errors in the code. Code walkthrough is an informal code analysis

technique.

In this technique, after a module has been coded, it is successfully compiled and

all syntax errors are eliminated. Some members of the development team are

given the code a few days before the walk-through meeting to read and

understand the code. Each member selects some test cases and simulates

execution of the code through different statements and functions of the code.

Even though a code walkthrough is an informal analysis technique, several

guidelines have evolved for making this technique more effective and useful.

Some guidelines are:

106

● The team performing the code walkthrough should not be either too big or

too small. Ideally, it should consist of three to seven members.

 Discussions should focus on discovery of errors and not on how to fix the

discovered errors.

Code Inspection and Software Documentation` Code

Inspection

The principal aim of code inspection is to check for the presence of some

common types of errors caused due to oversight and improper programming.

Some classical programming errors which can be checked during code

inspection are:

 Use of uninitialized variables

 Jumps into loops

 Non-terminating loops

 Array indicates out of bounds

 Improper storage allocation and deallocation

 Use of incorrect logical operators

 Improper modification of loop variables

 Comparison of equality of floating point values.

Software Documentation`

Different kinds of documents such as user's manual, software requirements

specification (SRS) document, design document, test document, installation

manual are part of the software engineering process. Good documents are very

useful and serve the following purposes:

➢ Good documents enhance understandability and maintainability of a

software product. They reduce the effort and time required for maintenance.

107

➢ Good documents help the users in effectively exploiting the system.

➢ Good documents help in effectively overcoming the manpower turnover

problem. Even when an engineer leaves the organization, the newcomer can

build up the required knowledge quickly.

➢ Good documents help the manner in effectively tracking the progress of the

project.

Different types of software documents can be broadly classified into:

o Internal documentation

o External documentation

Internal Documentation

Internal documentation is the code comprehension features provided in the

source code itself. Internal documentation can be provided in the code in several

forms. The important types of internal documentation are:

 Comments embedded in the source code

 Use of meaningful variable names

 Module and function headers

 Code structuring (i.e. Code decomposed into modules and functions)

 Use of constant identifiers

 Use of user-defined data types

External documentation

External documentation is provided through various types of supporting

documents such as users' manual, software requirements specification

document, design document, test document etc. A systematic software

development style ensures that all these documents are produced in an orderly

fashion.

An important feature of good documentations consistency with the code.

Inconsistencies in documents creates confusion in understanding the product.

Also, all the documents for a product should be up-to-date.

108

 Distinguish among Unit Testing, Integration Testing, and

System Testing

A software product is normally tested in the three levels:

 Unit testing

 Integration testing

 System testing

A unit test is a test written by the programmer to verify that a relatively small

piece of code is doing what it is intended to do. They are narrow in scope, they

should be easy to write and execute, and their effectiveness depends on what the

programmer considers to be useful. The tests are intended for the use of the

programmer. Unit tests shouldn't have dependencies on outside systems.

An integration test is done to demonstrate that different pieces of the system

work together. Integration tests cover whole applications, and they require much

more effort to put together. They usually require resources like database

instances and hardware to be allocated for them. The integration tests do a more

convincing job of demonstrating the system works (especially to non-

programmers) than a set of unit tests .

System tests test the entire system. It is set of test carried out by test engineer

against the software(system) developed by developer. In system testing the

complete system is configured in a controlled environment and test cases are

created to simulate the real time scenarios that occurs in a simulated real life test

environment. The purpose of system testing is to validate an application and

completeness in performing as designed and to test all functions of the system

that is required in real life. the most popular approach of system testing is Black

Box testing.

109

Unit testing

 Unit Testing

Unit testing or module testing of different units or modules of a system in

isolation.

Fig. 6.1 Unit testing

Unit testing is undertaken when a module has been coded and successfully

reviewed. The purpose of testing is to find and remove the errors in the software

as practical. The numbers of reasons in support of unit testing are:

 The size of a single module is small enough that we can locate an error

fairly easily.

 Confusing interactions of multiple error is widely different parts of

the software are eliminated.

Driver and Stub Modules

In order to test a single module, we need a complete environment to provide all

that is necessary for execution of the module. We will need the following in

order to be able to test the module:

o The procedures belonging to other modules that the module under

test calls.

o Nonlocalb data structures that the module accesses.

o A procedure to call the function of the module under test with

appropriate parameters.

110

Stubs and drivers are design to provide the complete for a module.

 Global Data

Fig. 6.2 Unit testing with the help of driver and stub module

A stub procedure is a dummy procedure that has the same I/O parameters as

given procedure but has a highly simplified behaviour. A driver module would

contain the no local data structure accessed by the module under test, and would

also have the code to call the different function of the module with appropriate

parameter values.

 Methods of Black –Box Testing

In the black-box testing, test cases are design from an examination of the

input/output values only and no knowledge of design or code is required. Two

main approaches to design black-box test cases are:

 Equivalence class Partitioning

 Boundary value analysis

Stub Module

Driver Module

Module under test

114

 Equivalence class Partitioning and Boundary Value

Analysis

Equivalence Class Partitioning

In the equivalence class partitioning approach, the domain of input values to a

program is partitioned into a set of equivalence classes. The partitioning is done

such that the behavior of the program is similar to every input data belonging to

the same equivalence class. The main idea behind defining the equivalence

classes is that testing the code with any one value belonging to an equivalence

class is as good as testing the software with any other value belonging to that

equivalence class. Equivalence classes for a software can be designed by

examining both the input and output data. Guidelines for designing the

equivalence classes are:

i) If the input data values to a system can be specified by a range of values, then

one valid and two invalid equivalence classes should be defined.

ii) If the input data assumes values from a set of discrete members of some

domain, then one equivalence classes for valid input values and another for

invalid input values should be defined.

Example – Suppose we have to develop a software that can calculate the square

root of an input integer . The value of the integer lies between 0 and 5000.

As the input domain of such software is 0 to 5000, so the equivalence class Of

the software will be 0 to 5000 .This equivalence class can be partitioned into

the following three equivalence classes

1. equivalence classes 1-The input integers whose value is less then

0.(invalid)

2. equivalence classes 2-The input integers whose value lies between and

5000.(valid)

115

3. equivalence classes 3- The input integers whose value is greater than

5000.(invalid).

So accordingly the following test cases are designed Test

case1=(-5,3000,7001), Test case2=(-20,100,5050), Test

case3=(-6,4000,9000)

Boundary Value Analysis

Boundary Value Analysis concentrates on the behavior of the system on its

boundaries of its input variables. The boundary of a variable includes the

maximum and the minimum valid value it is allowed attain in the system. It may

be an input or output or even some internal future or variable of the system that

captures some information of the system. Behavior of the system at its

boundaries is tested under boundary value analysis. Boundary value analysis-

based test suite design involves designing test cases using the values at the

boundary of different equivalence classes.

EX:-For the above software that calculates the square root of integer values in

the range between 0 and 5000 the test case can be designed as follows i.e.

{0,-1,5000,5001}

Summary of the Black-box test suite Design

 Examine the input and output values of the program.

 Identify the equivalence classes.

 Pick the test cases corresponding to equivalence class testing and

boundary value analysis.

 Methodologies for White –Box Testing

White –Box testing is also known as transparent testing. It is a test case design

method that uses the control structure of the procedural design to

110

derive test cases. It the most widely utilized unit testing to determine all

possible path with in a module, to execute all looks and to test all logical

expressions. This form of testing concentrate on procedural detail.

The general outline of the white-box testing process is:

 Perform risk analysis to guide entire testing

process.

 Develop a detailed test plan that organizes the subsequence testing

process.

 Prepare the test environment for test execution.

 Execute test cases and communicate the results.

 Prepare a report

Different white box methodologies: statement coverage branch

coverage, condition coverage, path coverage, data flow based

testing and mutation testing.

Statement Coverage

This statement coverage strategy aims to design test cases so that every

statement in a program is executed at least once. The principle idea governing

the statement coverage strategy is that unless a statement is executed there is no

way to determine whether an error exist in that statement unless a statement is

executed, we cannot observe whether it causes failure due to some illegal

memory access, wrong result computation etc.

111

Example:

Consider Euclid’s GCD computation algorithm:

Int compute_gcd(x,y)

Int x,y;

{

1 While (x != y) {

2 If (x > y) then

3 x = x − y;

4 else y = y – x; 5 }

6 return x;

}

Design of test cases for the above program segment Test

case1 Statement executed

x=5,y=5 1,5,6

Test case2 Statement executed

x=5,y=4 1,2,3,5,6

Test case3 Statement executed

x=4,y=5 1,2,4,5,6

so the test set of the above algorithm will be

{(x=5,y=5),(x=5,y=4),(x=4,y=5)}.

Branch Coverage

In the branch coverage-based testing strategy, test cases are designed to make

each branch condition assume true and false value in turn. Brach testing is also

known as edge testing, which is stronger than statement coverage testing

approach.

112

Example : As the above algorithm contains two control statements such as while

and if statement, so this algorithm has two number of branches. As each branch

contains a condition, therefore each branch should be tested by assigning true

value and false value respectively. So four number of test cases must be

designed to test the branches.

Test case1 x=6,y=6

Test case2 x=6,y=7

Test case3 x=8,y=7

Test case4 x=7,y=8

so the test set of the above algorithm will be

{(x=6,y=6),(x=6,y=7),(x=8,y=7),(x=7,y=8)}.

Condition Coverage

In this structural testing, test cases are designed to make each component of a

composite conditional expression assumes both true and false values. For

example, in the conditional expression ((C1 AND C2) OR C3), the components

C1,C2 andC3 are each made to assume both true and false values. Condition

testing is a stronger testing strategy than branch testing and branch testing is a

stronger testing strategy than the statement coverage- based testing.

Path Coverage

The path coverage-based testing strategy requires designing test cases such that

all linearly independent paths is the program are executed at least once. A

linearly independent path can be defined in the terms of the control flow graph

(CFG) of a program.

Control Flow Graph (CFG)

A control flow graph describes the sequence in which the different instructions

of a program get executed. The flow graph is a directed graph in which nodes

are either entire statement or fragments of a statement and edges

113

represents flow of control. An edge from one node to another exists if the

execution of the statement representing the first node can result in the transfer

of control to the other node.

A flow graph can easily be generated from the code of any problem.

Fig. 6.3 Control Flow Graph

int computer_gcd(int x, int y) {

1 while(x!=y) {

2 if(x>y) then 3

 x=x-y;

4 Else y-y-x; 5

 }

6 Return x;

}

1

2

3
4

5

6

114

Path

A path through a program is a node and edge sequence from the starting node to

a terminal node of the control flow graph of a program.. A program can have

more than one terminal nodes when it contains multiple exit or return type of

statements.

McCabe’s Cyclomatic Complexity Metric

Cyclomatic complexity defines an upper bound on the number of independent

paths in a program.

Given a control flow graph G of a program. Each node of the graph represents a

command or a statement of the program and each edge represents the flow of

execution between statements or nodes. For a control flow graph with E number

of edges and N number of nodes, the cyclomatic complexity can be computed as

M = E – N + 2P

Where P is the number of connected components in the graph.

Control flow graph of a sequential program is a single component graph.

Hence, for any sequential program

M = E – N + 2

115

Example:

Fig. 6.4 Control Flow Graph

Number of Edges = E = 7

Number of Nodes = N = 6

The value of cyclomatic complexity is

V(G) = E – N + 2

= 7 – 6 + 2

= 3

Data Flow – Based Testing

The data flow – based testing method selects the test paths of a program

according to the location of the definitions and use of the different variables in a

program.

1

2

3
4

5

6

116

Consider a program P. For a statement numbered S of P, let

DEF (S) = {X | Statement S contains a definition of X}, and

USES (S) = {X| Statement S contains a use of X}

For the statement S: a = b+c ; DEF (S) ={ a}, USES(S) ={b,c}

The definition of variable X at statement S is said to be live at statement SI, If

there exist a path from statement S to statement SI which doesn’t contain any

definition of X.

Mutation Testing

In mutation testing, the software is first tested by using an initial test suite built

of from different white – box testing strategies. After the initial testing is

complete, mutation testing is taken up. The idea behind mutation testing is to

make a few arbitrary changes to a program at a time. Each time the program is

changed, it is called a mutated program and the change effected is called a

mutant. A mutated program is tested against the full test suite of the program. If

there exists at least one test case in the test suite for which a mutant gives an

incorrect result, then the mutant is said to be dead. If a mutant remains alive

even after all the test cases have been exhausted, the test data is enhanced to kill

the mutant.

A major disadvantage of the mutation – based testing approach is that it is

computationally very expensive since a large number of possible mutants can be

generated.

Since mutation testing generates large mutants and requires us to each mutant

with the full test suite. It is not suitable for manual testing.

Debugging

Once errors are identified, it is necessary to first locate the precise program

statements responsible for the errors and then to fix them.

117

 Debugging Approaches

a. Buffer Force Method

This is the most common method of debugging, but is the least efficient

method. In this approach, the program is base with print statement to print the

intermediate values with the hope that some of the printed values will help to

identify the statement in error. This approach becomes more systematic with the

use of a symbolic debugger because the values of different variables can be

easily checked.

b. Backtracking

In this approach, beginning from the statement at which an error symptom is

observed, the source code is traced backwards until the error is discovered.

c. Cause Elimination Method

In this approach, a list of causes which could possibly have contributed to the

error symptom is developed and tests are conducted to eliminate each cause.

d. Program Slicing

This technique is similar to back tracking. However, the search space is reduced

by defining slices.

Debugging Guidelines

 Debugging is often carried out by programmers based on their ingenuity.

 Many a times, debugging requires a thorough understanding of the

program design.

 Debugging may sometimes even require full redesign of the system.

 One must be beware of the possibility that any one error correcting many

introduce new errors.

118

 Need for Integration Testing

The objective of integration testing is to test the module interfaces in order to

ensure that there are no errors in the parameter passing, when one module

invokes another module. During integration testing different modules of a

system are integrated in a planned manner using an integration plan. The

integration plan specifies the steps and the order in which modules are

combined to realize the full system. After each integration step, the partially

integrated system is tested.

Fig.6.5 Integration Testing

Anyone or a mixture of the following approaches can be used to develop the test

plan:

o Big – bang approach

o Top – down approach

o Bottom – up approach

o Mixed approach

o Big – bang approach

Big – Bang Approach

In this approach, all the modules of the system are simply put together and

tested. This technique is practicable only for small systems. The main problem

with this approach is that once an error is found during the integration testing, it

is very difficult to localize the error as the error may potentially belong to any of

the modules being integrated. Debugging errors reported during big–bang

integration testing are very expensive.

119

Top – Down Approach

Top – down integration proceeds down the invocation hierarchy, adding are

module at a time until an entire tree level is integrated and it elements the need

for drivers.

In this approach testing can start only after the top-level modules have been

coded and unit tested.

A disadvantage of the top- down integration testing approach is that in the

absence of lower –level routines , many times it may become difficult to

exercise the lower–level routines, many times it may become difficult to

exercise the top- level routines in the desired manner since the lower – level

routines perform several low level functions such I/O.

Bottom – up Integration Testing

In bottom-up testing, each subsystem is tested separately and then the full

system is tested. A subsystem might consist of many modules which

communicated among each other through well– defined interfaces. The primary

purpose of testing each subsystem is to test the interface among various

modules making up the subsystem. Both control and data interfaces are tested.

Advantages of bottom – up integration testing is that several disjoint subsystems

can be tested simultaneously.

A disadvantage of bottom – up testing is the complexity occurs when the system

is made up of a large number of small subsystems.

Mixed Integration Testing

A mixed(also called sandwiched) integration testing follows a combination of

top – down and bottom – up testing approaches. In this approach testing can

start as and when modules become available.

120

 System Testing: Alphas, Beta and Acceptance Testing

System tests are designed to validate a fully developed system to assure that it

meets its requirements. Three kinds of system testing are:

 Alpha testing

 Beta testing

 Acceptance testing

Alpha Testing

Alpha testing refers to the system testing carried out by the team within the

developing organization.

Beta testing

Beta testing is the system testing performed by a select group of friendly

customers.

Acceptance Testing

Acceptance testing is the system testing performed by the customer to

determine whether to accept or reject the delivery of the system.

The system test cases can be classified into functionality and performance test

case. The functionality test are designed to check whether the software satisfies

the functional requirements as documented in the SRS document. The

performance tests test the conformance of to the system with the nonfunctional

requirements of the system.

Performance Testing

Performance testing is carried out to check whether the system meets the non

– functional requirements identified in the SRS document. The types of

performance testing to be carried out on a system depend on the different

nonfunctional requirements of the system document in the SRS document. All

performance tests can be considered as black – box tests.

121

 Need for Stress Testing and Error Seeding

Stress Testing

Stress testing is also known as endurance testing. Stress testing evaluated

system performance when it is stressed for short periods of time. Stress tests are

black – box tests which are designed to impose a range of abnormal and even

illegal input conditions so as to stress the capabilities of the software. Input data

volumes, input data rate, processing time, utilization of memory are tested

beyond the designed capacity.

Stress testing is especially important for systems that usually operate below the

maximum capacity but are severely stressed at some peak demand hours.

Example : If the nonfunctional requirement specification states that the

response time should not be more than 20 seconds per transaction when 60

concurrent users are working, then during the stress testing the response time is

checked with 60 users working simultaneously.

Volume Testing

Volume testing checks whether the data structures (buffers, arrays, queues,

stacks etc.) have been designed to successfully handle extraordinary situations.

Example : A compiler might be tested to check whether the symbol table

overflows when a very large program is compiled.

Configuration Testing

Configuration testing is used to test system behavior in various hardware and

software configuration specified in the requirements.

Compatibility Testing

This type of testing is required when the system interfaces with external

systems such as databases, servers etc. Compatibility aims to check

122

whether the interface functions perform as required. For instance, if the

system needs to communicate with a large database system to retrieve

information, compatibility testing is required to test the speed and accuracy

of data retrieval.

Regression Testing

Regression testing is performed in the maintenance or development phase. This

type of testing is required when the system being tested is an upgradation of an

already existing system to fix some bugs or enhance functionality, performance

etc.

Recovery Testing

Recovery testing tests the response of the system to the presence of faults or loss

of power, devices, services data etc. For example, the printer can be

disconnected to check if the system hangs.

Maintenance Testing

Maintenance testing addresses the diagnostic programs and other procedures that

are required to be developed to help implement the maintenance of the system.

Documentation Testing

Documentation is checked to ensure that the required user manual, maintenance

manuals and technical manuals exist and are consistent.

Usability Testing

Usability testing pertains to checking the user interface to see if it meets all the

user requirements. During usability testing, the display screens, messages, report

formats and other aspects relating to the user interface requirements are tested.

Error Seeding

Error seed can be used to estimate the number of residual errors in a system.

Error seeding seeds the code with some known errors. The number of seeded

error detected in the course of standard testing procedure is determined.

123

These values in-conjunction with the number of unseeded errors can be used to

predict:

i) The number of errors remaining in the product

ii) The effectiveness of the testing method

Let n be the total number of errors in the system and let “n” number of these

errors are detected during testing.

Let “S” be the total number of seeded errors and let “s” be the number of these

errors are detected during testing.

n /N = s/ S

=> N = S * n /s

=> (N-n) = n(S-s) /S

 General Issues Associated with Testing

Some general issues associated with testing

i)Test documentation

ii) Regression testing

Test Documentation

A piece of documentation which is generated towards the end of testing is the

test summary report. The report normally covers each subsystem and

represents a summary of tests which have been applied to the subsystem. It

will specify how many tests have been applied to a subsystem. It will specify

how many tests have been successful, how many have been unsuccessful, and

the degree to which they have been unsuccessful.

Regression Testing

Regression testing does not belong to either unit testing, integration testing or

system testing. Regression testing is the practice of running an old test suite

after each change to the system or after each bug fix to ensure that no new

bug has been introduced as a result of this change made or bug fixed.

124

Chapter-7
Software Reliability

Content

Software Reliability
Different reliability metrics
Reliability growth modeling
Software quality
Software Quality Management System

 Importance of Software Reliability

Reliability of a software product can be defined as the probability of the product

 working correctly over a given period of time. A software product

having a large number of defects is unreliable. Reliability of a system improves

it the number of defects in it is reduced. The reliability of a product depends on

the both the number of errors and the exact location of the errors. Reliability

also depends upon how the product is used (i.e. on its execution profile).

Different users use a software product in different ways. So defects which show

up for one user may not show up for another user.

Software Reliability and Hardware Reliability

Reliability behavior for hardware and software is very different. Hardware

failures are due to component wear and tear. If hardware failure occurs one has

to either replace or repair the failed part. A software product would continue to

fail until the error is tracked down and either the design or the code is changed.

For this reason, when level that existed before the failure accrued, whereas

when a software failure is repaired, the reliability nay either increase or

decrease.

125

There are three phases in the life of any hardware component i.e. burn in, useful

life and wear out.

In burn in phase, failure rate is quite high initially as it starts decreasing as the

faulty components are identified and removed. The system then enters its useful

life.

During useful life period, failure rate is approximately constant. Failure rate

increases in wear- out phase due to warning out components. The best period is

useful life period. The shape of this curve a “both- tub” and it is also known as

both tub curve.

For software the failure rate is highest during integration and testing phases.

During the testing phase more and more errors are identified and moved

resulting in a reduced failure rate. This errors removal continues at a slower

speed during the useful life of the product. As the software becomes absolute,

no more error correction occurs and the failure rate remains unchanged.

 Distinguish between the Different Reliability Metrics

The reliability requirements for different categories of software products may be

different for this reason, it is necessary that the level of reliability required for a

software product should be specialized in the SRS document. Some reliability

metrics which can be used to quantity the reliability of software products are:

 Rate of Occurrence of Failure (ROCOF)

ROCOF measures the frequency of occurrence of unexpected behaviour (i.e.

failures). The ROCOF measure of a software product can be obtained by

observing the behaviour of a software product in operation over a specified time

interval and then calculating the total number of failures during this interval.

126

 Probability of Failure ON Demand (POFOD)

POFOD measures the likelihood of the system failure when a service request is

made. For example a POFOD of 0.001 would mean that 1 out of every 1000

service requests would result in a failure.

 Availability

Availability of a system is a measure of how likely will the system be available

for use over a given period of time. This metric not only considers the number

of failures occurring during a time interval, but also takes into account the

repair time (downtime) of a system when a failure occurs. In order to

intimately, it is necessary to classify various types of failures.

Possible classifications of failures are:

Transient: Transient failures occur only for certain input values while

invoking a function of the system.

Permanent: Permanent failures occur for all input values while invoking a

function of the system.

Recoverable: When recoverable failures occur, the system recovers with or

without operator intervention.

Unrecoverable: In unrecoverable failures, the system may need to be

restarted.

Cosmetics: These classes of failures cause only minor irritations, and do

not lead to incorrect results.

Mean TIME TO Failure (MTTF)

MTTF is the average time between two successive failures, observed over a

large number of failures. To measure MTTF, we can record the failure data for

n failures.

Mean Time to Repair (MTTR)

Once failure occurs, some time is required to fix the error. MTTR measures

the average time it takes to track the errors causing the failure and then to fix

them.

127

Mean Time Between Failures (MTBF)

MTBF = MTTF+MTTR

Thus, MTBF Of 300 hours indicates that once a failure occurs, the next failure

is expected to occur only after 300 hours. In this case, the time measurements

are real time and not the execution times as in MTTF. Software Quality

The objective of software engineering is to produce good quality maintainable

software in time and within budget. That is a quality product does exactly what

the users want it to do. The modern view of quality associates a software

product with several factors such as:

Portability

A software product is said to be portable, if it can be easily made to work in

different operating system environments in different machines with other

software products etc.

Reusability

A software product has good reusability, if different modules of the product

can easily be reused to develop new product.

Correctness

A software product is correct, if different requirements as specified in the

SRS document have been correctly implemented,

Maintainability

A software product is maintainable, if errors can be easily corrected as and

when they show up , new functions can be easily added to the product and the

functionality of the product can be easily modified etc.

 Reliability Growth Modeling

A reliability growth model is a mathematical model of how software

reliability improves as errors are detected and repaired. A reliability

growth model can be used to predict when a particular

128

level of reliability is likely to be attained. Thus, reliability growth

modeling can be used to determine when to stop testing to attain a

given reliability level. Two very simple reliability growth models are :

Jelinski and Moranda Model

The simplest reliability growth model is a step function model where

it is assumed that the reliability increases by a constant increment

each time an error is detected and repaired. However this simple

model of reliability which implicitly assumes that all errors contribute

equally to reliability growth, is highly unrealistic.

Fig.7.1 Step function model of reliability growth

Littlewood and Verall's Model

This model allows for negative reliability growth to reflect the fact that when a

repair is carried out, it may introduce additional errors. It also models the fact

that as errors are repaired, the average improvement in reliability per repair

decreases. It treats an error's contribution to reliability improvement to be

 an independent random variable having gamma distribution. This

ROCOF

Time

129

distribution models the fact that error corrections with large contributions to

reliability growth are removed first. This represents diminishing return as test

continues.

 Characteristics of Quality Software

The objective of software engineering is to produce good quality

maintainable software in time and within budget. That is, a quality product does

exactly what the users want it to do. The modern view of quality associates a

software product with several quality factors such as : Portability: A software

product is said to be portable, if it can be easily made to work in different

operating system environments, in different machines, with other software

products etc.

Usability: A software product has good usability, if different categories of

users can easily invoke the functions of the product.

Reusability: A software product has good reusability, if different modules of

the product can easily to develop new products.

Correctness: A software product is correct, if different requirements as

specified in the SRS document have been correctly implemented.

Maintainability: A software product is maintainability, if errors can be easily

corrected as and when they show up, new functions can be easily added to the

product, and the functionalities of the product can easily modified, etc.

 Evolution of Software Quality Management System

Software Quality Management System

Issues associated with a quality system are:

 Management structural and individual responsibilities

A quality system is actually the responsibility of the organization as a whole.

130

However, many organization have a separate quality department to perform

several quality system activities. The quality system of an organization should

have the support of the top management

 Quality system activities

 Auditing of the projects

 Review of the quality system

 Development of standards, procedures and guidelines etc.

 Production of reports for the top management summarizing

the effectiveness of the quality system in the organization.

A good quality system must be well documented.

Evolution of Quality Systems

Quality system have rapidly evolved over the last 5 decades. The quality

systems of organisation have undergone through 4-stages of evolution as :

Fig. 7.2Evolution of quality system and the corresponding shift in the

quality paradigm.

 Quality control focuses not only on detecting the defective product &

eliminating them. But also on determining the causes behind the defects.

Quality Assurance Method

Inspection

Quality Control(QC)

Quality Assurance

Total Quality

Management(TQM)

 Quality Paradigm

 Product assurance

Process Assurance

131

 The quality control aims at correcting the causes of errors & not just rejecting

the defective products.

The basic premises of modern quality assurance is that if an organizations

processes are good and are followed rigorously then the products are bound

to be of good quality.

The modern quality paradigm includes some guidance for recognising,

defining, analysing & improving the production process.

Total quality management (TQM) says that the process followed by an

organisation must be continuously improve through process measurement.

 Importance, Requirement and Procedure to Gain ISO 9000

Certification for Software Industry

ISO (International Standards Organization) is a consortium of 63 countries

established to formulate and foster standardisation. ISO published its 9000

series of standards in 1987.

The ISO 9000 standard specifies the guidelines for maintaining a quality

system. ISO 9000 specifies a set of guidelines for repeatable and high

quality product development.

ISO 9000 is a series of three standards: ISO 9001, ISO 9002, and ISO

9003.

ISO 9001: This standard applies to the organisations engaged in design,

development, production, and servicing of goods. This standard is

applicable to most software development organisations.

ISO 9002: This standard applies to those organisations which do not

design products but are only involved in production. Examples include

steel and car \ manufacturing industries.

ISO 9003: This standard applies to organisations involved only in

installation and testing of the products.

132

Requirement of ISO 9000 Certification

 Confidence of customers in an organisation increases when the

organisation qualifies for ISO 9001 certification.

 ISO 9000 requires a well-documented software production process.

 ISO 9000 makes the development process focused, efficient, and cost-

effective.

 ISO 9000 certification points out the weak points of an organization

and recommends remedial action.

 ISO 9000 sets the basic framework for the development of an optimal

process.

Procedure to gain ISO 9000 Certification

An organisation intending to obtain ISO 9000 certification applies to a ISO

9000 registrar for registration. The ISO 9000 registration process consists of

the following stages:

 Application: Once an organisation decides to go for ISO 9000

certification, it applies to a register for registration.

 Pre-assessment: During this stage, the registrar makes a rough assessment

of the organisation.

 Document Review and Adequacy of Audit : During this stage, the

registrar reviews the documents submitted by the organisation and makes

suggestions for possible improvements.

 Compliance audit: During this stage, the registrar checks whether the

suggestions made by it during review have been complied with by the

organisation or not.

 Continued Surveillance: The registrar continues to monitorthe

organisation, though periodically.

133

 SEI Capability Maturity Model (SEI CMM)

SEI Capability Maturity Model was proposed by Software Engineering Institute

of the Carnegie Mellon University, USA. SEI CMM classifies software

development industries into the following five maturity levels. The different

levels of SEI CMM have been designed so that it is easy for an organization to

slowly build its quality system beginning from scratch.

Level 1: Initial. A software development organization at this level is

characterized by ad hoc activity. Very few or no processes are defined and

followed. Since software production processes are not defined, different

engineers follow their own process and as a result the development efforts

become chaotic. It is called chaotic level.

Level 2: Repeatable. At this level, the basic project management practices such

as tracking cost and schedule are established. Size and cost estimation

techniques like function point analysis, COCOMO etc. are used.

Level 3: Defined. At this level, the processes for both management and

development activities are defined and documented. There is a common

organization-wide understanding of activities, roles and responsibilities. The

processes though defined, the process and the product qualities are not

measured. ISO 9000 aims at achieving this level.

Level 4: Managed: At this level, the focus is on software metrics. Two types

of metrics are collected. Product metrics measure the characteristics of the

product being developed, such as its size, reliability, time complexity,

understandability etc. Process metric reflect the effectiveness of the process

being used, such as the average defect correction time, productivity, the average

number of defects found per hour of inspection, the average number of failures

detected during testing per LOC, and so forth

Level:5 Optimizing: At this stage, the process and the product metrics are collected.

Process and Product measurement data are analyzed for continuous process

improvement.

134

 Compare between ISO 9000 Certification and SEI/CMM

 ISO 9000 is awarded by an international standards body. ISO 9000

certification can be quoted by an organization in official documents.

However, SEI CMM assessment is purely for internal use.

 SEI CMM was specifically developed for software industry alone.

 SEI CMM goes beyond quality assurance and prepares on organization to

ultimately achieve TQM. ISO 9000 aims at level 3 of SEI/CMM model

135

Model Question for Software Engineering

Model Question carrying 2 marks each.

1. What is a prototype?

2. What is project risk?

3. Define software reliability.

4. Differentiiate between verification and validation .

5. What do mean by debugging?

6. Distinguish between alpha and beta testing

7.What is Direct Manipulating Interface?

8.What do you mean by SRS ?

9. What is software reliability?

10. What is a structure chart?

11. What do you mean by CASE?

12.What is project planning?

13.What is staffing?

14. what is scheduling?

15. What is DFD?

16. Why should we use a life cycle model?

17Define object oriented concept.

18.Write down the structured analysis methodology.

19.Define coding standards and guidelines.

20. What is GUI?

21. What is function point metric?

136

22. Which software producted is treated as organic type?

23. Which software product is treated as embedded type?

24.What do you mean by coupling.

25. What is software engineering.

Model Question carrying 6 marks each

1. What is software reliability? Discuss the three software reliability metrics.

2. Describe how to get 9000 certification.

3. Explain Transform Analysis and Transaction Analysis.

4.What are the characteristics of good SRS document?

5.Discuss the project estimation technique.

6.Explain the main aspects of GUI.

7. Write down the rules for UID.

8. What is CASE tool? What are the benefits of CASE?

9. Differentiate between object oriented and function oriented software design?

10. Distinguish between cohesion and coupling. Classify cohesiveness.

11.Explain the features of spiral model.

12.Write down the effect of schedule change on cost. 13.Write

down the work Breakdown Structure of scheduling. 14.Explain

Activity networks of Scheduling.

15.Write down the concept of Gantt Chart & PERT Chart on scheduling.

16.Explain the software design approaches.

17. What is DFD? Write down the list of symbols used in DFD.

18. Explain code inspections.

19. Explain software documentation.

20. Explain debugging approaches & guidelines.

21. Explain the need for stress testing.

22. Explain error seeding of software testing. 23.Write

down the importance of software reliability. 24.Explain

reliability growth modelling

25. Write down the characteristics of quality software. Write down the

evolution of software quality management system.

26. Briefly explain the building blocks for CASE.

27.Write down the limitations of DFD.

28. Explain code inspections methodology.

29.Explain software documentation.

137

30. Define system testing and explain various types of system testing

approaches.

Model Question carrying 8 marks each.

1. What is cohesion and coupling? Explain the different types of cohesion and

coupling.

2. Discuss the prototype model of software development.

3.Discuss about SEI Capability Maturity Model.

4. Explain UID Processs and models.

5. Explain interface design activities, defining interface objects, actions and the

design issues.

6. Compare the various types of interface.

7. What is COCOMO model of estimation? Discuss the features of different

COCOMO models.

8. What is cyclomatic complexity? Why it is used? Explain how cyclomatic

complexity is computed? Give an illustration for this.

9. Explain the project estimation technique.

10. Explain the different phases of classical waterfall model.

11. Explain the different methods of white box testing techniques.

12. What is integration testing? Explain the different methods of integration

testing.

13. Explain the steps of prototyping model with a diagram.

14.Write down the different steps of spiral model and explain.

15. Write down the responsibilities of a software project manager in software

Engineering.

16. Explain organization structure with diagram.

17. Explain team structure with diagram.

18.Explain the classification of coupling.

19. Explain 0 level, 1 level, 2 level DFD with an example.

20.Write down the uses of structure chart & structured design.

21. Explain the principles of transformation of DFD to a structure chart.

22. Explain the different types user Interface so that the user can easily interact

with the software.

23. Differentiate between object oriented and function oriented design

approaches.

24. Explain different Black Box testing approaches used for software testing.

25.Explain the different metrics used for software size estimation.

138

26. Write short notes on:

a. Spiral model

b. FP based metric

c. Jensen model for stating level estimation,

d. project management.

e. Black box testing

f. Risk management

****GOOD LUCK****

	Prepared by :
	2. Software Project Management 28-60
	3. Requirement Analysis and specification 61-71
	4. Software Design 72-91
	5. User Interface Design 92-103
	6. Software Coding & Testing 104-123
	7. Software Reliability 124-134
	Model Question for Software Engineering 135-137

	BOOKS Recommended:-
	Relevance of Software Engineering
	Software Characteristics and Applications
	Software Applications

	Emergence of Software Engineering
	Early Computer Programming, High Level Language Programming, Control Flow Based Design, Data Flow Oriented Design, Data Structure Oriented Design, Object and Component Bases Design
	Early Computer Programming
	High-Level Language Programming
	Control Flow-Based Design
	Data Structure-Oriented Design
	Object-Oriented Design

	Software Life Cycle Models
	Classical Waterfall Model and Iterative Waterfall Model
	Feasibility Study
	Technical Feasibility
	Economic Feasibility
	Operational Feasibility
	Requirement Analysis and Specifications
	Requirements Gathering and Analysis
	Requirements Specification
	Design
	Traditional Design Approach
	Object-Oriented Design Approach
	Coding and Unit Testing
	Integration and System Testing
	Maintenance
	 Corrective Maintenance
	 Perfective Maintenance
	 Adaptive Maintenance
	Iterative Waterfall Model

	Prototyping Model
	Evolutionary Model
	Spiral Model
	Spiral Model Strengths
	Spiral Model Weaknesses

	Chapter - 2 Understanding Project Management
	Contents

	Software Project Management
	Project Management
	Job Responsibilities of a Software Project Manager
	Skills Necessary for Software Project Management
	Project Planning
	Sliding Window Technique

	Project Size Estimation Metrics, Line Of Control (LOC) and Function Point Metric (FP)
	Lines Of Code (LOC)
	Function Point Metric
	Objectives of Function Point Counting
	Steps of Function Point Counting
	 Number Of Inputs:
	 Number Of Outputs:
	 Number Of Inquiries:
	 Number Of Files:
	 Number Of Interfaces:

	Feature Point Metric
	Project Estimation Techniques
	Empirical Estimation Techniques
	Heuristic Techniques
	Analytical Estimation Techniques
	Halstead’s Software Science an Analytical Estimation Techniques
	Operators and Operands for the ANSI C Language
	Length and Vocabulary
	Program Volume
	Effort and Time
	Actual Length Estimation
	Empirical Estimation Techniques (1)
	 Expert Judgment Technique
	 Delphi Cost Estimation

	COCOMO: A Heuristic Estimation Technique
	Basic COCOMO
	Intermediate COCOMO
	Product
	Computer
	Personnel
	Development Environment
	Complete COCOMO / Detailed COCOMO

	Effect of Schedule Change on Cost
	Jensen Model for Staffing Level Estimation
	Tools for Scheduling
	Use of Work Breakdown Structure, Activity Networks, Gantt Chart and PERT in Scheduling
	Work Breakdown Structure
	Activity Networks and Critical Path Method
	 Critical Path Method
	Gantt Chart
	PERT (Project Evaluation and Review Technique) Charts

	Organisation Structure
	Team Structure
	Chief Programmer Team
	Democratic Team
	Mixed Control Team Organization

	Importance of Risk Identification, Risk Assessment and Risk Containment with reference to Risk Management
	Risk Identification
	Risks Assessment
	Risk Containment
	Avoid the Risk
	Transfer the Risk
	Risk Reduction

	Chapter-3
	Need for Requirement Analysis
	Steps in Requirements Elicitation for Software: Initiating the Process, Facilitated Application Specification Techniques, Quality Function Deployment
	Initiating the Process
	Facilitated Application Specification Techniques
	Quality Function Deployment (QFD)

	Principles of Analysis
	Software Prototyping
	Prototyping Approach
	Prototyping Tools and Methods
	Software Requirement Specification Principle

	SRS Document
	Software Requirement Specification
	Contents of the SRS Document

	Characteristics and Organization of SRS Document
	Characteristics of SRS document
	Organization of the SRS Document

	Chapter-4
	Software Design
	Contents

	What is a Good S/W design
	Design Principles and Concepts
	Design Principles
	Design Concepts
	Preliminary Design / High-Level Design
	Detailed Design
	What is a Good Software Design
	Modularity
	Clean Decomposition
	Layered Design

	Cohesion and Coupling
	Cohesion
	Error isolation
	Scope for Reuse
	Understandability

	Classification of Cohesiveness
	Coincidental Cohesion
	Logical Cohesion
	Temporal Cohesion
	Procedural Cohesion
	Communication Cohesion
	Sequential Cohesion
	Functional Cohesion

	Classification of Coupling
	Data Coupling
	Stamp Coupling
	Control Coupling
	Common Coupling
	Content coupling

	S/W Design Approaches
	Function oriented design
	Top-down decomposition
	Object Oriented Design

	Structured Analysis Methodology
	Use of Data Flow Diagram
	Lists the Symbols used in DFD
	Construction of DFD
	Context Diagram
	Level 1 DFD
	Decomposition

	Limitations of DFD
	Structured Design
	Module invocation arrows
	Data flow arrows
	Flow Chart vs Structure Chart
	Principles of transformation of DFD to structure chart
	Transform Analysis
	Transaction Analysis

	Chapter-5
	Rules for UID (User Interface Design)
	Place the user in control
	Reduce the User’s Memory Load
	Make the Interface Consistent

	Interface Design Models
	The User Interface Design Process

	Interface Design Activities, Defining Interface Objects and Actions and the Design Issues
	Interface Design Activities
	Defining Interface Objects and Actions
	Design Issues
	Compare the Various Types of Interface
	Command Language-Based Interfaces
	Issues in Designing a Command Language Interface
	Menu-based interfaces
	Scrolling Menu
	Walking Menu
	Hierarchical Menu:
	Direct Manipulation Interfaces
	Main aspects of Graphical UI, Text based Interface Aspects of GUI
	Text Based Interface

	Chapter -6
	Content
	Coding Standards and Guidelines
	Code Walk-Through
	Code Inspection and Software Documentation` Code Inspection
	Software Documentation`
	Internal Documentation
	External documentation

	Distinguish among Unit Testing, Integration Testing, and System Testing
	Unit Testing
	Driver and Stub Modules

	Global Data
	Methods of Black –Box Testing
	Equivalence class Partitioning and Boundary Value Analysis
	Equivalence Class Partitioning
	Summary of the Black-box test suite Design

	Methodologies for White –Box Testing
	Different white box methodologies: statement coverage branch coverage, condition coverage, path coverage, data flow based testing and mutation testing.
	Statement Coverage
	Branch Coverage
	Condition Coverage
	Path Coverage
	Control Flow Graph (CFG)
	Path
	McCabe’s Cyclomatic Complexity Metric

	Example:
	Data Flow – Based Testing
	Mutation Testing
	Debugging
	a. Buffer Force Method
	b. Backtracking
	c. Cause Elimination Method
	d. Program Slicing
	Debugging Guidelines
	Need for Integration Testing
	Big – Bang Approach
	Top – Down Approach
	Bottom – up Integration Testing
	Mixed Integration Testing

	System Testing: Alphas, Beta and Acceptance Testing
	Alpha Testing
	Beta testing
	Acceptance Testing
	Performance Testing

	Need for Stress Testing and Error Seeding
	Stress Testing
	Volume Testing
	Configuration Testing
	Compatibility Testing
	Regression Testing
	Recovery Testing
	Maintenance Testing
	Documentation Testing
	Usability Testing
	Error Seeding

	General Issues Associated with Testing
	Test Documentation
	Regression Testing

	Software Reliability
	Importance of Software Reliability
	Software Reliability and Hardware Reliability

	Distinguish between the Different Reliability Metrics
	 Rate of Occurrence of Failure (ROCOF)
	 Probability of Failure ON Demand (POFOD)
	 Availability
	Mean TIME TO Failure (MTTF)
	Mean Time to Repair (MTTR)
	Mean Time Between Failures (MTBF)
	Portability
	Reusability
	Correctness
	Maintainability

	Reliability Growth Modeling
	A reliability growth model is a mathematical model of how software reliability improves as errors are detected and repaired. A reliability growth model can be used to predict when a particular
	Littlewood and Verall's Model

	Characteristics of Quality Software
	Evolution of Software Quality Management System Software Quality Management System
	 Management structural and individual responsibilities
	 Quality system activities
	Evolution of Quality Systems

	Importance, Requirement and Procedure to Gain ISO 9000 Certification for Software Industry
	Requirement of ISO 9000 Certification
	Procedure to gain ISO 9000 Certification
	SEI Capability Maturity Model (SEI CMM)
	Compare between ISO 9000 Certification and SEI/CMM

	Model Question for Software Engineering
	Model Question carrying 2 marks each.

	Model Question carrying 6 marks each
	Model Question carrying 8 marks each.

