REFRIGERATION AND AIR CONDITIONING

QUESTION BANK

PREPARED BY

Dr. Shubhashree Mohapatra

(Assistant Professor, CVRP)

DEPARTMENT OF MECHANICAL ENGINEERING C. V. RAMAN POLYTECHNIC, BHUBANESWAR.

- 1. Short questions (2 marks)
 - a) Write the name of four important components of vapour compression system.
 - b) Define 'tonne' of refrigeration.
 - c) Differentiate between heat pump and refrigerator.
 - d) Define sub-cooling. Explain its effect on COP of a vapour compression refrigeration cycle
 - e) Define COP of refrigerator and heat pump.
 - f) What is the function of refrigerant
 - g) Define relative humidity
 - h) What do you mean by refrigeration
 - i) Define sensible heat factor
 - j) Define DBT, DPT, WBT
 - k) Define humidity ratio
 - 1) Why comfort chart is recommended
 - m) What do you understand by human comfort
 - n) What is the use of air filter and blower in air conditioning system
 - o) Define moist air
 - p) Name the equipment used in air conditioning system
 - q) What are the chemical formula of refrigerant R-11, R-12, R-22, R114
 - r) What is saturated air
 - s) Draw T-S and P-H diagram for VCRS when vapour after compression is (i) dry saturated and (ii) wet
 - t) Why throttle valve is used in VCRS instead of expansion cylinder
 - u) Define heat rejection factor
 - v) Define fouling factor
 - w) Define the function of a condenser in refrigeration system
 - x) What are the factors affect heat transfer capacity of an evaporator.
 - y) Name the components of air conditioning system.
- 2. Questions (5 Marks)
 - a) Differentiate between open and close refrigeration system
 - b) Explain different physical properties of refrigerant
 - c) Describe simple VARS
 - d) Compare VARS with VCRS
 - e) Differentiate between summer air conditioning and winter air conditioning system.
 - f) State the factors considered while selecting a refrigerant
 - g) Describe chemical properties of a ideal refrigerant
 - h) With the help of psychrometric chart, explain sensible heating and sensible cooling

- i) In a vapour absorption refrigeration system, heating, cooling and refrigeration takes place at the temperature of 100°C, 20°C and -5°C respectively. Find COP of refrigeration system.
- j) Derive the expression for COP of vapour compression cycle when vapour is superheated before compression with proper P-h and T-S diagram.
- k) Write down properties of refrigerant-absorbent combination in vapour absorption refrigeration cycle
- A Carnot refrigeration cycle works between the temperature limit of 27°C and -3°C. Determine (i) COP as refrigerator

(ii) If heat absorb is 1130 KJ/min, find work done per second

and (iii) COP of heat pump

- m) Explain with the help of diagram, the practical vapour absorption refrigeration system.
- n) State the advantages of closed air refrigeration system over open air refrigeration system
- A carnot cycle machine operates between the temperature limits of 47°C and -30°C. Determine the COP when it operates as a. refrigerator, b. heat pump and c. heat engine.
- p) Describe the mechanism of simple VCRS
- q) Draw ideal and actual p-v diagram for reciprocating compressor.
- r) Compare between air cooled and water cooled condenser
- s) Explain working of automatic expansion valve.
- t) What is a sling psychrometer? Explain with neat sketch
- u) Write a short note on by-pass factor for cooling coils.
- 3. Questions (10 marks)
 - a) Atmospheric air at pressure 1 bar and temperature 10°C is drawn in compressor of Bell-Coleman cycle. The air is then compressed to 5 bar. The compressed air is cooled to 25°C before entering to the expansion valve. Considering $PV^{1.2} = C$ for the compression and expansion, find COP of the cycle.
 - b) A refrigerating system working on bell- Coleman cycle receives air from cold chamber at -5°C and compresses it from 1 bar to 4.5 bar. The compressed air is then cooled to temperature of 37°C before it is expanded in the expander. Calculate COP of the system when the compression and expansion are isoentropic.
 - c) A vapour compression refrigerator uses ammonia and operates between temperature limits of -10°C and 25°C. At the end of compression, the refrigerant is dry-saturated. Find the COP of the refrigerator assuming no under-cooling. [5]

Saturation temperature °C	Liquid heat (kJ/kg)	Latent heat(kJ/kg)	Liquid entropy (kJ/kg K)

25	298.9	1166.94	1.1242
-10	135.37	1297.68	0.5443

d) A VARS operates between temperature limits of -10°C and 45°C. At entry to the compressor, the refrigerant is dry and saturated and after compression it acquires a temperature of 60°C. Find COP of the refrigerator.

Saturation temperature °C	Enthalpy		Entropy	
	Liquid (kJ/kg)	Vapour (kJ/kg)	Liquid (kJ/kg K)	Vapour(kJ/kg K)
45	133.0	483.6	0.485	1.587
-10	45.4	460.7	0.183	1.637

- e) How actual VCRS differs from theoretical VCRS
- f) A single stage reciprocating compressor is required to compress 1.5 m3/min of vapour refrigerant from 1 bar to 8 bar. Find power required to drive the compressor if the compression of refrigerant is 1. Isothermal, 2. Polytropic with n=1.12 and 3. isoentropic.
- g) Explain various types of water cooled condenser.
- h) Write a short note on cooling tower, spray pond and evaporative condenser.
- i) The atmospheric condition of air are 25°C DBT and specific humidity of 0.01 kg per kg of dry air. Find Partial pressure of vapour, relative humidity and dPT
- j) An air conditioning plant is required to supply 60 m3 of air per minute at a DBT of 21°C and 55% RH. The outside air is at DBT of 28°C and 60% RH. Determine the mass of water drained and capacity of cooling coil. Assume cooling and dehumidification process.
- k) Write a short note on factors affecting comfort air conditioning