LESSON PLAN

Name of the Institute:		C. V. RAMAN POLYTECHNIC	
Department:		BASIC SCIENCE AND HUMANITIES	
Semester/Division/Branch:		2 ND SEM/ ALL BRANCHES	
Subject Name with code:		APPLIED PHYSICS 2	
Total No. of Class (Required):		60	
Faculty Name:		Dr. Krutika L. Routray	
Class No. Brief description of the Topic/Chapter to be taught			Remarks
1	Wave motion - Introduction	ı	
2	Terms - displacement, amplitude, time period,frequency,wavelength,wave velocity,		
3	Transverse wave motion		
4	longitudinal wave motion		
5	Difference b/w Transverse & longitudinal wave motion		
6	Relationship among	wave velocity, frequency and wave length.	
	• Simple Harmonic M	otion (SHM): definition, examples	
7	Cantilever		
	• Vibrations & its types		
8	Acoustics of buildin	gs – reverberation	
	 reverberation time 		
9	Echo, noise, coefficient of absorption of sound		
10	methods to control reverbe	ration time.	
11		Ultrasonics	
12	Engineering applications of	Ultrasonics	
13	Optics – Introduction.		

14	Reflection of Light • Refraction of Light		
15	Refractive index Total internal reflection Critical angle		
	 Applications of TIR		
16	Super Position of Waves, Definition of Interference, Diffraction and		
	Polarization of Waves • Microscope, telescope& their uses		
17	Introduction of Lens, lens Formula (no derivation), Power of Lens • Based numerical		
18	Assignment – wave motion and Ultrasonics		
19	Test		
20	Electrostatics and Electricity – Introduction		
21	Coulombs law • Unit charge		
22	Electric field • Electric lines of force, its properties		
23	Electric Intensity • Electric Flux		
24	Electric potential • Electric field intensity due to a point charge.		
21	Gauss law(Statement and derivation)		
22	Capacitor • Capacitance		
23	Series combination of capacitors		
24	parallel combination of capacitors Ohm's Laws		
25	Numerical based on Grouping of capacitors		
26	dielectric and its effect on capacitance, dielectric break down.		
27	Revision and test		
28	Introduction to Current Electricity		
29	Electric Current and its units, Direct and alternating current, Resistance		
	and its units, Specific resis tance, Conductance, Specific conductance,		
30	Series and parallel combination of resistances. Factors affecting		
	resistance of a wire, carbon resistances and colour coding		
31	Ohm's law and its verification , numericals		
32	Kirchhoff's laws, Wheatstone bridge and its applications (slide wire bridge only)		

33	Concept of terminal potential difference and Electro motive force (EMF)		
34	Heating effect of current		
35	Electric power, Electric energy and its units (related numerical problems)		
36	Advantages of Electric Energy over other forms of energy		
37	Types of magnetic materials; dia, para and ferromagnetic with their properties		
38	Magnetic field and its units, magnetic intensity,		
39	magnetic lines of force, magnetic flux and units, magnetization		
40	Concept of electromagnetic induction		
41	Faraday's Laws, Lorentz force (force on moving charge in magnetic field		
42	Force on current carrying conductor, force on rectangular coil placed in magnetic field. Solve numerical problems		
43	Moving coil galvanometer; principle, construction and working, Conversion of a galvanometer into ammeter and voltmeter		
44	Revision and test . Assignment		
45	Introduction to Semiconductor Physics		
46	Energy bands in solids, Types of materials (insulator, semi-conductor, conductor),		
47	intrinsic and ex trinsic semiconductors, p-n junction, junction diode and V-I characteristics		
48	types of junction diodes. Diode as rectifier – half wave and full wave rectifier (centre taped).		
49	Transistor; description and three terminals, Types- pnp and npn, some electronic applications		
50	Photocells, Solar cells; working principle and engineering applications		
51	Introduction to Modern Physics		
52	Lasers: Energy levels, ionization and excitation potentials		
53	spontaneous and stimulated emission; population inversion, pumping methods, optical feedback		

54	Types of lasers; Ruby, He-Ne and semicon ductor, laser characteristics, engineering and medical applications of lasers.	
55	Fiber Optics: Introduction to optical fibers, light propagation, acceptance angle and numerical aper ture,	
56	fiber types, applications in; telecommunication, medical and sensors	
57	Nanoscience and Nanotechnology- : Introduction, nanoparticles and nanomaterials, properties at nanoscale, nanotechnology	
58	Nanotechnology based devices and applications.	
59	Test	
60	revision	

Krulika L. Ronthay

Signature of the Faculty

Signature of the H.O.D