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PROPERTIES OF FLUIDS AND FLUID STATICS 
 

Introduction to Fluid Mechanics 

 

Definition of a fluid  

 

A fluid is defined as a substance that deforms continuously under the action of a shear stress, however small 

magnitude present. It means that a fluid deforms under very small shear stress, but a solid may not deform 

under that magnitude of the shear stress.  

By contrast a solid deforms when a constant shear stress is applied, but its deformation does not continue 

with increasing time. In Fig.1.1, deformation pattern of a solid and a fluid under the action of constant shear 

force is illustrated. We explain in detail here deformation behavior of a solid and a fluid under the action of 

a shear force.  

In Fig.1, a shear force F is applied to the upper plate to which the solid has been bonded, a shear stress 

resulted by the force equals to, where A is the contact area of the upper plate. We know that in the case of 

the solid block the deformation is proportional to the shear stress t provided the elastic limit of the solid 

material is not exceeded. When a fluid is placed between the plates, the deformation of the fluid element is 

illustrated in Fig.1.3. We can observe the fact that the deformation of the fluid element continues to 

increase as long as the force is applied. The fluid particles in direct contact with the plates move with the 

same speed of the plates. This can be interpreted that there is no slip at the boundary. This fluid 

behavior has been verified in numerous experiments with various kinds of fluid and boundary 

material. In short, a fluid continues in motion under the application of a shear stress and can not 

sustain any shear stress when at rest. 

 

 
 
 

Fig. 1 Deformation of solid under a constant shear force 



 
Properties of fluid 

 
Some of the basic properties of fluids are discussed below- 

 

Density : As we stated earlier the density of a substance is its mass per unit volume. In fluid 

mechanic it is expressed in three different ways- 

 

Mass density r is the mass of the fluid per unit volume (given by Eq.1.1) 

 
Unit- 

Dimension- 

Typical values: water- 1000 kg/ 

Air- at standard pressure and temperature (STP) 

 

Specific weight, w: - As we express a mass M has a weight W=Mg . The specific weight of the 

fluid can be defined similarly as its weight per unit volume. 
 

L-2.1 

Unit: 

Dimension: 



Typical values; water- 

Air- (STP) 

Relative density (Specific gravity), S :- 

 

Specific gravity is the ratio of fluid density (specific weight) to the fluid density (specific weight) 

of a standard reference fluid. For liquids water at is considered as standard fluid. 

 

 
L-2.2 

 

Similarly for gases air at specific temperature and pressure is considered as a standard reference 

fluid. 

 

 

L-2.3 

Units: pure number having no units. 

Dimension:- 

Typical vales : - Mercury- 13.6 

 

Water-1 

 
Specific volume : - Specific volume of a fluid is mean volume per unit mass i.e. the reciprocal 

of mass density. 

 

 
L-2.4 

 
Units:- 

Dimension: 

Typical values: - Water - 

 
Air- 

 

Viscosity 



In section L1 definition of a fluid says that under the action of a shear stress a fluid continuously 

deforms, and the shear strain results with time due to the deformation. Viscosity is a fluid property, 

which determines the relationship between the fluid strain rate and the applied shear stress. It can 

be noted that in fluid flows, shear strain rate is considered, not shear strain as commonly used in 

solid mechanics. Viscosity can be inferred as a quantative measure of a fluid's resistance to the 

flow. For example moving an object through air requires very less force compared to water. This 

means that air has low viscosity than water. 

 

Let us consider a fluid element placed between two infinite plates as shown in fig (Fig-2.1). The 

upper plate moves at a constant velocity      under the action of constant shear force       . The shear 

stress, t is expressed as 

 

 
where,        is the area of contact of the fluid element with the top plate. Under the action of shear 

force the fluid element is deformed from position ABCD at time t to position AB'C'D' at time

 (fig-L2.1 ). The shear strain rate is given by 

 

 
Shear strain rate L2.6 

 

Where     is the angular deformation 

 

From the geometry of the figure, we can define 

 

 
For small , 

Therefore, 

 

 

The limit of both side of the equality gives L-2.5 

The above expression relates shear strain rate to velocity gradient along the y -axis. 

Newton's Viscosity Law 

 

Sir Isaac Newton conducted many experimental studies on various fluids to determine relationship 

between shear stress and the shear strain rate. The experimental finding showed that 



a linear relation between them is applicable for common fluids such as water, oil, and air. The 

relation is 

 

 
Substituting the relation gives in equation(L-2.5 ) 

 

 
L-2.6 

 

Introducing the constant of proportionality 

 

 
where is called absolute or dynamic viscosity. Dimensions and units for are 

and , respectively. [In the absolute metric system basic unit of co-efficient of viscosity 

is called poise. 1 poise = ] 
 

 

Typical relationships for common fluids are illustrated in Fig-L2.3. 

 

The fluids that follow the linear relationship given in equation (L-2.7) are called Newtonian 

fluids. 



 

Kinematic viscosity v 

 

Kinematic viscosity is defined as the ratio of dynamic viscosity to mass density 

 

 
L-2.8 

 
Units: 

 
Dimension: 

 
Typical values: water 

 
Non - Newtonian fluids 

 
Fluids in which shear stress is not linearly related to the rate of shear strain are non– Newtonian 

fluids. Examples are paints, blot, polymeric solution, etc. Instead of the dynamic viscosity 

apparent viscosity, which is the slope of shear stress versus shear strain rate curve, is used 

for these types of fluid. 

 
Based on the behavior of , non-Newtonian fluids are broadly classified into the following 

groups – 

 
a. Pseudo plastics (shear thinning fluids):        decreases with increasing shear strain rate. For 

example polymer solutions, colloidal suspensions, latex paints, pseudo plastic. 

b. Dilatants (shear thickening fluids) increases with increasing shear strain rate. 

 

Examples: Suspension of starch and quick sand (mixture of water and sand). 

 

c. Plastics : Fluids that can sustain finite shear stress without any deformation, but once shear 

stress exceeds the finite stress , they flow like a fluid. The relation between the shear stress 

and the resulting shear strain is given by 

 

 

L-2.9 

 

Fluids with n = 1 are called Bingham plastic. some examples are clay suspensions, tooth paste 



and fly ash. 



d. Thixotropic fluid(Fig. L-2.4): decreases with time under a constant applied shear 

stress. 

 

Example: Ink, crude oils. 

 

e. Rheopectic fluid : increases with increasing time. 

 

Example: some typical liquid-solid suspensions. 
 
 

 
 

Example 

 
As shown in the figure a cubical block of 20 cm side and of 20 kg weight is allowed to slide 

down along a plane inclined at 300 to the horizontal on which there is a film of oil having 

viscosity 2.16x10-3 N-s/m2 .What will be the terminal velocity of the block if the film thickness 

is 0.025mm? 



 

 
 

 
 

Given data : Weight = 20 kg 

 

Block dimension = 20x20x20 cm3 

Driving force along the plane 

Shear force 

Contact area, 

 

 
Also, 

Answer: 28.38m/s. 

Example 

If the equation of a velocity profile over a plate is v = 5y 2 + y (where v is the velocity in m/s) 

determine the shear stress at y =0 and at y =7.5cm . Given the viscosity of the liquid is 8.35 

poise. 

 

Solution 

 
 

Given Data: Velocity profile 

 



 
 
 

 

Substituting y = 0 and y =0.075 on the above equation, we get shear stress at 

respective depths. 

 
Answer:   0.835 ; 

 
Surface tension and Capillarity 

Surface tension 

In this section we will discuss about a fluid property which occurs at the interfaces of a liquid and 

gas or at the interface of two immiscible liquids. As shown in Fig (L - 3.1) the liquid molecules- 

'A' is under the action of molecular attraction between like molecules (cohesion). However the 

molecule ‘B' close to the interface is subject to molecular attractions between both like and unlike 

molecules (adhesion). As a result the cohesive forces cancel for liquid molecule 'A'. But at the 

interface of molecule 'B' the cohesive forces exceed the adhesive force of the gas. The 

corresponding net force acts on the interface; the interface is at a state of tension similar to a 

stretched elastic membrane. As explained, the corresponding net force is referred to as surface 

tension, . In short it is apparent tensile stresses which acts at the interface of two immiscible fluids. 

 
 



Dimension: 

Unit: 

Typical values: Water at C with air. 

 
Note that surface tension decreases with the liquid temperature because intermolecular cohesive 

forces decreases. At the critical temperature of a fluid surface tension becomes zero; i.e. the 

boundary between the fluids vanishes. 

 

Pressure difference at the interface 

 

 

 

Surface tension on a droplet 

 

 
In order to study the effect of surface tension on the pressure difference across a curved 

interface, consider a small spherical droplet of a fluid at rest. 

 
 

Since the droplet is small the hydrostatic pressure variations become negligible. The droplet is 

divided into two halves as shown in Fig.L-3.2. Since the droplet is at rest, the sum of the forces 

acting at the interface in any direction will be zero. Note that the only forces acting at the 

interface are pressure and surface tension. Equilibrium of forces gives 

 

L - 3.1 

 
Solving for the pressure difference and then denoting we can rewrite equation 

(L- 3.1) as 

 
Contact angle and welting 



As shown in fig. a liquid contacts a solid surface. The line at which liquid gas and solid meet is 

called the contact line. At the contact line the net surface tension depending upon all three 

materials - liquid, gas, and solid is evident in the contact angle, . A force balance on the 

contact line yields: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

here         is the surface tension of the gas-solid interface, is the surface tension of solid- 

liquid interface, and is the surface tension of liquid-gas interface. 

 

 
 

Typical values: 

 
for air-water- glass interface 

 
for air-mercury–glass interface 

 
If the contact angle the liquid is said to wet the solid. Otherwise, the solid surface is not 

wetted by the liquid, when  . 

Capillarity 

 
If a thin tube, open at the both ends, is inserted vertically in to a liquid, which wets the tube, the 

liquid will rise in the tube (fig : L -3.4). If the liquid does not wet the tube it will be depressed 

below the level of free surface outside. Such a phenomenon of rise or fall of the liquid surface 

relative to the adjacent level of the fluid is called capillarity. If is the angle of contact between 

liquid and solid, d is the tube diameter, we can determine the capillary rise or depression, h by 

equating force balance in the z-direction (shown in Fig : L-3.5), taking into account surface 



tension, gravity and pressure. Since the column of fluid is at rest, the sum of all of forces acting on 

the fluid column is zero. 
 

 

 

The pressure acting on the top curved interface in the tube is atmospheric, the pressure acting on 

the bottom of the liquid column is at atmospheric pressure because the lines of constant pressure 

in a liquid at rest are horizontal and the tube is open. 

 
Upward force due to surface tension 

 

 
Weight of the liquid column 

Thus equating these two forces we find 

 
The expression for h becomes 

 

 

L -3.2 

 

Typical values of capillary rise are 

 

a. Capillary rise is approximately 4.5 mm for water in a glass tube of 5 mm diameter. 

b. Capillary depression is approximately - 1.5 mm (depression) for mercury in the same tube. 

c. Capillary action causes a serious source of error in reading the levels of the liquid in small 

pressure measuring tubes. Therefore the diameter of the measuring tubes should be large 

enough so that errors due to the capillary rise should be very less. Besides this, 



capillary action causes the movement of liquids to penetrate cracks even when there is no 

significant pressure difference acting to move the fluids in to the cracks. 

d. In figure (Fig : L - 3.6), a two-dimensional model for the capillary rise of a liquid in a crack 

width, b, is illustrated. The height of the capillary rise can also be computed by equating 

force balance as explained in the previous section. 

 

 
Capillary rise, L-3.3 

 

 

Vapour Pressure 

 
Since the molecules of a liquid are in constant motion, some of the molecules in the surface layer 

having sufficient energy will escape from the liquid surface, and then changes from liquid state 

to gas state. If the space above the liquid is confined and the number of the molecules of the liquid 

striking the liquid surface and condensing is equal to the number of liquid molecules at any time 

interval becomes equal, an equilibrium exists. These molecules exerts of partial pressure on the 

liquid surface known as vapour pressure of the liquid, because degree of molecular activity 

increases with increasing temperature. The vapour pressure increases with temperature. Boiling 

occurs when the pressure above a liquid becomes equal to or less then the vapour pressure of the 

liquid. It means that boiling of water may occur at room temperature if the pressure is reduced 

sufficiently. 

 

For example water will boil at 60 ° C temperature if the pressure is reduced to 0.2 atm. 

 
Cavitation 



In many fluid problems, areas of low pressure can occur locally. If the pressure in such areas is 

equal to or less then the vapour pressure, the liquid evaporates and forms a cloud of vapour 

bubbles. This phenomenon is called cavitation. This cloud of vapour bubbles is swept in to an area 

of high pressure zone by the flowing liquid. Under the high pressure the bubbles collapses. If this 

phenomenon occurs in contact with a solid surface, the high pressure developed by collapsing 

bubbles can erode the material from the solid surface and small cavities may be formed on the 

surface. 

 

The cavitation affects the performance of hydraulic machines such as pumps, turbines and 

propellers. 

 

Compressibility and the bulk modulus of elasticity 

 
When a fluid is subjected to a pressure increase the volume of the fluid decreases. The relationship 

between the change of pressure and volume is linear for many fluids. This relationship may be 

defined by a proportionality constant called bulk modulus. 

 

Consider a fluid occupying a volume V in the piston and cylinder arrangement shown in figure. 

If the pressure on the fluid increase from p to due to the piston movement as a result the 

volume is decreased by . We can express the bulk modulus of elasticity 

 

 
L - 4.1 

 
The negative sign indicates the volume decreases as pressure increases. As in the limit as

 then 

 
 

L - 4.2 

 

 
Since the equation can be rearranged as 

 

 

 

L - 4.3 

Dimension :- 

Unit :- 
 

Typical values:- 

Air - 1.03 x 10 5 N/m2 



water  at standard temperature and pressure as compared to that of 

Mild steel . 

The above typical values show that the air is about 20,000 times more compressible than water 

while water is about 100 times more compressible than mild steel. 

 

Basic Equations 

 
To analysis of any fluid problem, the knowledge of the basic laws governing the fluid flows is 

required. The basic laws, applicable to any fluid flow, are: 

 

a. Conservation of mass. (Continuity) 

b. Linear momentum. ( Newton 's second law of motion) 

c. Conservation of energy (First law of Thermodynamics) 

 

Besides these governing equations, we need the state relations like and appropriate 

boundary conditions at solid surface, interfaces, inlets and exits. Note that all basic laws are not 

always required to any one problem. These basic laws, as similar in solid mechanics and 

thermodynamics, are to be reformulated in suitable forms so that they can be easily applied to 

solve wide variety of fluid problems. 

 

System and control volume 

 
A system refers to a fixed, identifiable quantity of mass which is separated from its surrounding 

by its boundaries. The boundary surface may vary with time however no mass crosses the system 

boundary. In fluid mechanics an infinitesimal lump of fluid is considered as a system and is 

referred as a fluid element or a particle. Since a fluid particle has larger dimension than the limiting 

volume (refer to section fluid as a continuum). The continuum concept for the flow analysis is 

valid. 

 

control volume is a fixed, identifiable region in space through which fluid flows. The boundary 

of the control volume is called control surface. The fluid mass in a control volume may vary with 

time. The shape and size of the control volume may be arbitrary. 



 

 
 

 

 

System and control volume 

 
When a fluid is at rest, the fluid exerts a force normal to a solid boundary or any imaginary plane 

drawn through the fluid. Since the force may vary within the region of interest, we conveniently 

define the force in terms of the pressure, P, of the fluid. The pressure is defined as the force per 

unit area. 

 
 

 

 
Fig : L - 6.1: Pressure variation at the bottom surface Pb and at the inclined surface Pi 

 
 

In Fig : L - 6.1 pressure variation of a fluid at different locations is illustrated. 

 

Commonly the pressure changes from point to point. We can define the pressure at a point as 

 

 
L - 6.1 

 
where    is the area on which the force    acts. It is a scalar field and varies spatially and temporally 

as given P = P (x, y, z, t) 

 

Pascal's Law : Pressure at a point 



The Pascal's law states that the pressure at a point in a fluid at rest is the same in all directions . 

Let us prove this law by considering the equilibrium of a small fluid element shown in Fig : L - 6.2 

 
 

 
Fig : L -6.2: A fluid element with force components 

 
Since the fluid is at rest, there will be no shearing stress on the faces of the element. 

 
The equilibrium of the fluid element implies that sum of the forces in any direction must be zero. 

For the x-direction: 

 
Force due to Px is 

Component of force due to Pn 

 
Summing the forces we get, 

 

 

 

Similarly in the y-direction, we can equate the forces as given below 

Force due to Py = 

 
Component of force due to Pn 



 
 
 

 

The negative sign indicates that weight of the fluid element acts in opposite direction of the z- 

direction. 

 

Summing the forces yields 

 

 

 
Since the volume of the fluids is very small, the weight of the element is negligible 

in comparison with other force terms. So the above Equation becomes 

 

Py = P n 

 

Hence, P n = P x = P y 

 

Similar relation can be derived for the z-axis direction. 

 

This law is valid for the cases of fluid flow where shear stresses do not exist. The cases are 

 

a. Fluid at rest. 

b. No relative motion exists between different fluid layers. For example, fluid at a constant 

linear acceleration in a container. 

c. Ideal fluid flow where viscous force is negligible. 

 
Basic equations of fluid statics 

 
An equation representing pressure field P = P (x, y, z) within fluid at rest is derived in this section. 

Since the fluid is at rest, we can define the pressure field in terms of space dimensions (x, y and 

z) only. 

 

Consider a fluid element of rectangular parellopiped shape( Fig : L - 7.1) within a large fluid region 

which is at rest. The forces acting on the element are body and surface forces. 



 

 
 

 
 

Body force: The body force due to gravity is 

 
L -7.1 

 
Where is the volume of the element. 

 

Surface force: The pressure at the center of the element is assumed to be P (x, y, z). Using Taylor 

series expansion the pressure at point on the surface can be expressed as 

 

 

 
L -7.2 

 

 

 
When , only the first two terms become significant. The above equation becomes 

 

 

L - 7.3 

 

 
Similarly, pressures at the center of all the faces can be derived in terms of P (x, y, z) and its 

gradient. 



Note that surface areas of the faces are very small. The center pressure of the face represents

 the average pressure on that face. 

The surface force acting on the element in the y-direction is 

 

 

 

 

 
L -7.4 

 
Similarly the surface forces on the other two directions (x and z) will be 

 
 

 
 

 
The surface force which is the vectorical sum of the force scalar components 

 

 

 
 

L - 7.5 

 
The total force acting on the fluid is 

 

 

 
L - 7.6 

 
The total force per unit volume is 

 
 

 
For a static fluid, dF=0 . 

 
 

Then, L -7.7 

 



 
 

 

If acceleration due to gravity is expressed as , the components of 

Eq(L- 7.8) in the x, y and z directions are 

 

 
 

 
 

 
The above equations are the basic equation for a fluid at rest. 

 
Simplifications of the Basic Equations 

 
If the gravity is aligned with one of the co-ordinate axis, for example z- axis, then 

 

 

 
The component equations are reduced to 

 
 

 

L -7.9 

 
Under this assumption, the pressure P depends on z only. Therefore, total derivative can be used 

instead of the partial derivative. 



 
 

This simplification is valid under the following restrictions 

 
a. Static fluid 

 

b. Gravity is the only body force. 
 

c. The z-axis is vertical and upward. 

 
Pressure variations in an incompressible fluid at rest 

 
In some fluid problems, fluids may be considered homogenous and incompressible i.e . density 

is constant. Integrating the equation (L -7.10) with condition given in figure (Fig : L - 7.2), we 

have 

 
 

 
 

 

 

Pressure variation in an incompressible fluid 

 
This indicates that the pressure increases linearly from the free surface in an incompressible 

static fluid as illustrated by the linear distribution in the above figure. 

 

Scales of pressure measurement 



Fluid pressures can be measured with reference to any arbitrary datum. The common datum are 

 

1. Absolute zero pressure. 

2. Local atmospheric pressure 

 

When absolute zero (complete vacuum) is used as a datum, the pressure difference is called an 

absolute pressure, P abs . 

 

When the pressure difference is measured either above or below local atmospheric pressure, 

P local , as a datum, it is called the gauge pressure. Local atmospheric pressure can be measured by 

mercury barometer. 

 

At sea level, under normal conditions, the atmospheric pressure is approximately 101.043 kPa. 

As illustrated in figure( Fig : L -7.2), 

When Pabs < Plocal 

 

P gauge = P local - P abs L - 7.12 

 

Note that if the absolute pressure is below the local pressure then the pressure difference is known 

as vacuum suction pressure. 

 

Example 1 : 

 
Convert a pressure head of 10 m of water column to kerosene of specific gravity 0.8 and carbon- 

tetra-chloride of specific gravity of 1.62. 

 

Solution 

 
Given data: 

 

Height of water column, h 1 = 10 m 

Specific gravity of water s1 = 1.0 

Specific gravity of kerosene s2 = 0.8 

 
Specific gravity of carbon-tetra-chloride, s3 = 1.62 

For the equivalent water head 

Weight of the water column = Weight of the kerosene column. 
 

g g 



So, h1 s1 = h2 s2 = h3 s3 g 



Answer:- 12.5 m and 6.17 m. 

 

Example 2 

 

Determine (a) the gauge pressure and (b) The absolute pressure of water at a depth of 9 m from 

the surface. 

 

Solution 

 

Given data: 

 

Depth of water = 9 m 

 

the density of water = 998.2 kg/m3 

 

And acceleration due to gravity = 9.81 m/s2 

Thus the pressure at that depth due to the overlying water is P = r gh = 88.131 kN/m2 

Case a) as already discussed, gauge pressure is the pressure above the normal atmospheric 

pressure. 
 

Thus, the gauge pressure at that depth = 88.131 kN/m2 

Case b) The standard atmospheric pressure is 101.213 kN/m2 

Thus, the absolute  pressure as P abs = 88.131+101.213 = 189.344 kN/m2 

Answer: 88.131 kN/m2 ; 101.213 kN/m2 

 

 

Manometers: Pressure Measuring Devices 

 

Manometers are simple devices that employ liquid columns for measuring pressure difference 

between two points. 

 

In Figure(L 8.1), some of the commonly used manometers are shown. 

 

In all the cases, a tube is attached to a point where the pressure difference is to be measured and 

its other end left open to the atmosphere. If the pressure at the point P is higher than the local 

atmospheric pressure the liquid will rise in the tube. Since the column of the liquid in the tube is 

at rest, the liquid pressure P must be balanced by the hydrostatic pressure due to the column of 

liquid and the superimposed atmospheric pressure, Patm . 

 



 

 

 

Simple Manometer 

 
This simplest form of manometer is called a Piezometer . It may be inadequate if the pressure 

difference is either very small or large. 

 

U - Tube Manometer 

 
In (Fig : L -8.2), a manometer with two vertical limbs forms a U-shaped measuring tube. A liquid 

of different density is used as a manometric fluid. We may recall the Pascal's law which states 

that the pressure on a horizontal plane in a continuous fluid at rest is the same. Applying this 

equality of pressure at points B and C on the plane gives 

 

 
 

 

 

 

U-tube Manometer 

 
Inclined Manometer 

 

A manometer with an inclined tube arrangement helps to amplify the pressure reading, especially in low press 

range. A typical arrangement of the same is shown in Fig. L-8.3. 



The pressure at O is 

 

 
The pressure at O is 

 

 
Equating the pressures, we have 

 

 

 

 
Inclined Manometer 

 
At the same pressure difference, Equations (1) and (2) indicate that inclined tube manometer 

 
amplifies the length of measurement by , which is the primary advantage of such type of 

manometer. 

 

Differential Manometers 

 

Differential Manometers measure difference of pressure between two points in a fluid system 

and cannot measure the actual pressures at any point in the system. 

 

Some of the common types of differential manometers are 

 
a. Upright U-Tube manometer 

b. Inverted U-Tube manometer 
c. Inclined Differential manometer 

d. Micro manometer 

 
Upright U-Tube manometer: 



As shown in Fig. : L-8.4, an upright U-tube manometer is connected between points A and B. The 

difference of pressure between the points may be calculated by balancing pressure in a horizontal 

plane, the lowest interface A-A is used for this case. 

 

 
Upright U-tube Manometer 

 
 

or 

 

 
Inverted U-Tube manometer: 

 
The manometer fluid used in this type of manometer is lighter than the working fluids. Thus the 

height difference in two limbs is enhanced. This is therefore suitable for measurement of small 

pressure difference in liquids. For the configurations given in Fig. L-8.1. 

 
 

 
Fig. L-8.5 Inverted Manometer 

 

Or 

 
If the two points A and B are at the same level and the same fluid is used, then P 1 = P 2 = P 

and h 2 + h 3 =h 1 . 

 

The above equation becomes 



Inclined Differential Manometer 

 

 
In this type of manometer a narrow tube is connected to a reservoir at an inclination. The cross 

section of the reservoir is larger than that of the tube. Fluctuations in the reservoir may be ignored. 

As shown in Fig.L-8.6, the initial liquid level in both the reservoir and the tube is at o-o. The 

application of the differential pressure liquid level of the reservoir drops by   , whereas h is 

the rising level in the tube. Therefore 

 

 
Since the volume of liquid displaced in the reservoir equals to the volume of liquid in the tube, we 

can define 

 

 
Where 'A' and 'a' are the cross sectional areas of the reservoir and the tube respectively. Then the 

equation becomes 

 

In practice, the reservoir area is much larger than that of the tube; the ratio      is negligible and the 

above equation is reduced to ; h = L sin  

Micro manometer: 
 

 

 

Fig. L-8.6: Micro manometer 



A typical micro-manometer tube arrangement as shown in fig has a reservoir which can be 

moved up and down by means of micrometer screw. A flexible tube is connected between point A 

and the reservoir. Another flexible tube connecting point B and the other end of the reservoir is 

placed on an inclined surface. A reference mark 'R' is provided on the inclined portion of the tube. 

Before application of the pressure, the level of the reservoir is moved so as to coincide this level 

with the reference mark. When a pressure difference is applied, the liquid levels will be disturbed. 

The micrometer arrangement is then adjusted to vary the reservoir level so as to coincide with the 

reference. The extent of movement of the micrometer screw gives the pressure difference between 

the two points A and B. 

 

Example 1: 

 
Two pipes on the same elevation convey water and oil of specific gravity 0.88 respectively. They 

are connected by a U-tube manometer with the manometric liquid having a specific gravity of 

1.25. If the manometric liquid in the limb connecting the water pipe is 2 m higher than the other 

find the pressure difference in two pipes. 

 

Solution : 

 
Given data: 

 

Height difference = 2 m 

Specific gravity of oil s = 0.88 

Specific gravity of manometric liquid s = 1.25 

Equating pressure head at section (A-A) 



 
 

 

Substituing h = 5 m and density of water 998.2 kg/m3 we have P A -P B = 10791 

 
Example 2: 

 
A two liquid double column enlarged-ends manometer is used to measure pressure difference 

between two points. The basins are partially filled with liquid of specific gravity 0.75 and the lower 

portion of U-tube is filled with mercury of specific gravity 13.6. The diameter of the basin is 20 

times higher than that of the U-tube. Find the pressure difference if the U-tube reading is 25 mm 

and the liquid in the pipe has a specific weight of 0.475 N/m3. 

 

Solution: 

 
Given data: U-tube reading 25 mm 

Specific gravity of liquid in the basin 0.75 

Specific gravity of Mercury in the U-tube13.6 

As the volume displaced is constant we have, 

 



g 

 

 
 
 

 

Equating pressure head at (A--A) 

Put the value of Y while X and Z cancel out. 

Answer: 31.51 kPa 

 

Example 3: 

 
As shown in figure water flows through pipe A and B. The pressure difference of these two points 

is to be measured by multiple tube manometers. Oil with specific gravity 0.88 is in the upper 

portion of inverted U-tube and mercury in the bottom of both bends. Determine the pressure 

difference. 

 

Solution 

 
Given data: Specific gravity of the oil in the inverted tube 0.88 

Specific gravity of Mercury in the U-tube13.6 

 

Calculate the Pressure difference between each two point as follow 

P2 -P1 = h = h S w g 



 

 
 

Start from one and i.e. PA or P B 
 

 

 
Rearranging and summing all these equations we have PA - PB = 103.28 w g 

 
Example 4: 

 
A manometer connected to a pipe indicates a negative gauge pressure of 70 mm of mercury . 

What is the pressure in the pipe in N/m2 ? 

 

Solution : 

 
Given data: 

 

Manometer pressure- 70 mm of mercury (Negative gauge pressure) 

A pressure of 70 mm of Mercury, P = r gh = 9.322 kN/m 2 

Also we know the gauge pressure is the pressure above the atmosphere. 

 

Thus a negative gauge pressure of 70 mm of mercury indicates the absolute pressure of 



P abs = 101.213 + (-9.322) = 91.819 kN/m 2 

Answer: 91.819 kN/m 2 

 

Example 5: 

 
An empty cylindrical bucket with negligible thickness and weight is forced with its open end first into water 

until its lower edge is 4m below the water level. If the diameter and length of the bucket are 0.3m and 

0.8m respectively and the trapped water remains at constant temperature. What would be the force 

required to hold the bucket in that position atmospheric pressure being 1.03 N/cm 2 

 

Solution : 

 

 

 
 

Let, the water rises a height x in the bucket 

 

By applying the Boyle's Law at constant temperature we have 

 
 

Also, Downward pressure ion the bucket, 

Solve for, p 1 and x. 

 

 



 
Total upward force exerted by the trapped water 

Downward force due to the overlying water and the Atmospheric Pressure 



 

2 

Answer: 1.62KN 

 

Example 6: 
 

A pipe connected with a tank (diameter 3 m) has an inclination of with the horizontal and the 

diameter of the pipe is 20 cm. Determine the angle ? which will give a deflection of 5 m in the 

pipe for a gauge pressure of 1 m water in the tank. Liquid in the tank has a specific gravity of 0.88. 

 

Solution : 
 

 
 

 

 
Given data: 

 

Diameter   of    tank    =   3    m 

Diameter  of   tube   =   20   cm 

Deflection in    the   pipe,   L =   5   m 

From    the    figure     shown 

h = L sin  
If X m fall of liquid in the tank rises L m in the tube. (Note that the volume displaced is the same 

in the tank is equal to the volume displaced in the pipe) 



= 

 

Difference of head = x + h = L sin q + 0.04 L/9 

 

And 

Substitute L = 5m in the above equation. 
Answer: 12.87 0 

 
 
Introduction 

Designing of any hydraulic structure, which retains a significant amount of liquid, needs to 

calculate the total force caused by the retaining liquid on the surface of the structure. Other critical 

components of the force such as the direction and the line of action need to be addressed. In this 

module the resultant force acting on a submerged surface is derived. 

 

Hydrostatic force on a plane submerged surface 

 
Shown in Fig.L-9.1 is a plane surface of arbitrary shape fully submerged in a uniform liquid. 

Since there can be no shear force in a static liquid, the hydrostatic force must act normal to the 

surface. 

 
Consider an element of area on the upper surface. The pressure force acting on the element 

is 

 

 



Fig : L - 9.1: Hydrostatic force and center of pressure on an inclined surface 

 
Note that the direction of       is normal to the surface area and the negative sign shows that the 

pressure force acts against the surface. The total hydrostatic force on the surface can be computed 

by integrating the infinitesimal forces over the entire surface area. 

 

If h is the depth of the element, from the horizontal free surface as given in Equation (L2.9) 

becomes 

 

 
L-9.1 

 
If the fluid density is constant and P 0 is the atmospheric pressure at the free surface, integration 

of the above equation can be carried out to determine the pressure at the element as given below 

 

 

 
 

L-9.2 

 

Total hydrostatic force acting on the surface is 

 

 

 

 

 

 

 

 
L-9.3 

 

 
The integral is the first moment of the surface area about the x-axis. 

If yc is the y coordinate of the centroid of the area, we can express 

 
L-9.4 



in which A is the total area of the submerged plane. 

Thus 

 
 

L-9.5 
 

This equation says that the total hydrostatic force on a submerged plane surface equals to the 

pressure at the centroid of the area times the submerged area of the surface and acts normal to it 

 
 

Centre of Pressure (CP) 

 

The point of action of total hydrostatic force on the submerged surface is called the Centre of 

Pressure (CP). To find the co-ordinates of CP, we know that the moment of the resultant force 

about any axis must be equal to the moment of distributed force about the same axis. Referring to 

Fig. L-9.2, we can equate the moments about the x-axis. 

 

 
L-9.6 

 

 
Neglecting   the    atmospheric    pressure    ( P0 =    0 )    and    substituting 

, P=wh and , 

 

 
We get 

 

 



 

We get 

 

From parallel-axis theorem 

 

 

 

 
Where is the second moment of the area about the centroidal axis. 

 

 

 

 

 
L-9.8 

 

This equation indicates that the centre of the pressure is always below the centroid of the 

submerged plane. Similarly, the derivation of xcp can be carried out 

 

Hydrostatic force on a Curved Submerged surface 

 

On a curved submerged surface as shown in Fig. L-9.3, the direction of the hydrostatic pressure 

being normal to the surface varies from point to point. Consider an elementary area in the 

curved submerged surface in a fluid at rest. The pressure force acting on the element is 

 

 
The total hydrostatic force can be computed as 

 

 
Note that since the direction of the pressure varies along the curved surface, we cannot integrate 



the above integral as it was carried out in the previous section. The force vector    is expressed in 

terms of its scalar components as 

 

 

in   which represent the scalar components of F in the x , y and z directions 

respectively. 

 

For computing the component of the force in the x-direction, the dot product of the force and the 

unit vector (    i ) gives 

 

 

 

 

 
 

Where         is the area projection of the curved element on a plane perpendicular to the x-axis. This 

integral means that each component of the force on a curved surface is equal to the force on the 

plane area formed by projection of the curved surface into a plane normal to the component. The 

magnitude of the force component in the vertical direction (z direction) 

Since and neglecting    , we can write 

 

in which is the weight of liquid above the element surface. This integral shows that the z- 

component of the force (vertical component) equals to the weight of liquid between the submerged 

surface and the free surface. The line of action of the component passes through the centre of gravity 

of the volume of liquid between the free surface and the submerged surface 

 

 
 

Example 1 : 

 

A vertical gate of 5 m height and 3 m wide closes a tunnel running full with water. The pressure 

at the bottom of the gate is 195 kN/m 2 . Determine the total pressure on the gate and position of 

the centre of the pressure. 



Solution 

 

 

 

 
Given data:  Area of the gate = 5x3 = 15 m 2 

 

The equivalent height of water which gives a pressure intensity of 195 kN/m2 at the bottom. 

h = P/w =19.87m. 

Total force 

 
And 

 
 

[I G = bd 3 /12] 

Answer: 2.56MN and 17.49 m 

 

Example 2 : 
 

A vertical rectangular gate of 4m x 2m is hinged at a point 0.25 m below the centre of gravity of 

the gate. If the total depth of water is 7 m what horizontal force must be applied at the bottom to 

keep the gate closed? 

 

Solution 



 
 

 

Given data: Area of the gate = 4x2 = 8 m 2 

Depth of the water = 7 m 

Hydrostatic force on the gate 

 
 

 
Taking moments about the hinge we get, 

Answer: 18.8 kN. 

 

 

Buoyancy 

Introduction 

In our common experience we know that wooden objects float on water, but a small needle of iron 

sinks into water. This means that a fluid exerts an upward force on a body which is immersed fully 

or partially in it. The upward force that tends to lift the body is called the buoyant 

force,    . 



The buoyant force acting on floating and submerged objects can be estimated by employing 

hydrostatic principle. 

 

 

With reference to figure(L- 10.1), consider a fluid element of area . The net upward force 

acting on the fluid element is 

 

 
The total upward buoyant force becomes 

 

 

L- 

10.2 
 

This result shows that the buoyant force acting on the object is equal to the weight of the fluid it 

displaces. 

 
 

Center of Buoyancy 

 

The line of action of the buoyant force on the object is called the center of buoyancy. To find the 

centre of buoyancy, moments about an axis OO can be taken and equated to the moment of the 

resultant forces. The equation gives the distance to the centeroid to the object volume. 

 

The centeroid of the displaced volume of fluid is the centre of buoyancy, which, is applicable for 

both submerged and floating objects. This principle is known as the Archimedes principle which 

states: 

 

“A body immersed in a fluid experiences a vertical buoyant force which is equal to the weight of 

the fluid displaced by the body and the buoyant force acts upward through the centroid of the 

displaced volume". 



 

Buoyant force in a layered fluid 

 

As shown in figure (L-10.2) an object floats at an interface between two immiscible fluids of density . 
 
 

 

 

Considering the element shown in Figure L-10.3, the buoyant force is 

 

 

 

 
L-10.3 

 

where are the volumes of fluid element submerged in fluid 1 and 2 respectively. The 

centre of buoyancy can be estimated by summing moments of the buoyant forces in each fluid 

volume displaced. 

Buoyant force on a floating body 

 

When a body is partially submerged in a liquid, with the remainder in contact with air (as shown 

in figure), the buoyant force of the body can also be computed using equation (L-10.3). Since the 

specific weight of the air (11.8 ) is negligible as compared with the specific weight of the 

liquid (for example specific weight of water is 9800 ),we can neglect the weight of 

displaced air. Hence, equation (L-10.3) becomes 



 
 

 
 

 

Fig. L-10.4: Partially submerged body 

 

(Displaced volume of the submerged liquid) 

 

= The weight of the liquid displaced by the body. 

 

The buoyant force acts at the centre of the buoyancy which coincides with the centeroid of the 

volume of liquid displaced. 

 
Example 1: 

 
A large iceberg floating in sea water is of cubical shape and its specific gravity is 0.9 If 20 cm 

proportion of the iceberg is above the sea surface, determine the volume of the iceberg if specific 

gravity of sea water is 1.025. 

 

Solution: 

 
Let the side of the cubical iceberg be h. 

 

Total volume of the iceberg = h 3 

 

volume of the submerged portion is = ( h -20) x h 2 

 

Now, 

For flotation, weight of the iceberg = weight of the displaced water 

 

 
The side of the iceberg is 164 cm. 



Thus the volume of the iceberg is 4.41m3 

Answer: 4.41m 3 

Stability 

Introduction 

Floating or submerged bodies such as boats, ships etc. are sometime acted upon by certain external 

forces. Some of the common external forces are wind and wave action, pressure due to river 

current, pressure due to maneuvering a floating object in a curved path, etc. These external forces 

cause a small displacement to the body which may overturn it. If a floating or submerged body, 

under action of small displacement due to any external force, is overturn and then capsized, the 

body is said to be in unstable. Otherwise, after imposing such a displacement the body restores its 

original position and this body is said to be in stable equilibrium. Therefore, in the design of the 

floating/submerged bodies the stability analysis is one of major criteria. 

 

Stability of a Submerged body 

 
Consider a body fully submerged in a fluid in the case shown in figure (Fig. L-11.1) of which the 

center of gravity (CG) of the body is below the centre of buoyancy. When a small angular 

displacement is applied a moment will generate and restore the body to its original position; the 

body is stable. 

 
 

 
However if the CG is above the centre of buoyancy an overturning moment rotates the body away 

from its original position and thus the body is unstable (see Fig L-11.2). Note that as the body is 

fully submerged, the shape of the displaced fluid remains the same when the body is tilted. 

Therefore the centre of buoyancy in a submerged body remains unchanged. 

 

Stability of a floating body 



A body floating in equilibrium ( ) is displaced through an angular displacement . The 

weight of the fluid W continues to act through G. But the shape of immersed volume of liquid 

changes and the centre of buoyancy relative to body moves from B to B 1 . Since the buoyant 

force      and the weight W are not in the same straight line, a turning movement proportional to 

' ' is produced. 

In figure (Fig. L-11.2) the moment is a restoring moment and makes the body stable. In figure 

(Fig. L-11.2) an overturning moment is produced. The point ' M ' at which the line of action of 

the new buoyant force intersects the original vertical through the CG of the body, is called the 

metacentre. The restoring moment 

 

 
Provided     is small; (in radians). 

 

The distance GM is called the metacentric height. We can observe in figure that 

 

Stable equilibrium: when M lies above G , a restoring moment is produced. Metacentric height 

GM is positive. 

 

Unstable equilibrium: When M lies below G an overturning moment is produced and the 

metacentric height GM is negative. 

 

Natural equilibrium: If M coincides with G neither restoring nor overturning moment is produced 

and GM is zero. 

 

 
 

Determination of Meta-centric Height 

 

Experimental method 

 

The metacentric height of a floating body can be determined in an experimental set up with 

a movable load arrangement. Because of the movement of the load, the floating 

object is tilted with angle    for its new equilibrium position. The measurement of     is used 

to compute the metacentric height by equating the overturning moment and restoring 

moment at the new tilted position. 

 

The   overturning   moment   due   to   the   movement   of   load P for   a   known distance, 

x, is 



 
The restoring moment is 



For equilibrium in the tilted position, the restoring moment must equal to the overturning 

moment. Equating the same yields 

 

 
The metacentric height becomes 

 

 

And the true metacentric height is the value of  as . This may be determined by 

plotting a graph between the calculated value of for various values and the angle . 

 

 

 

 

 

 

 

 
Theoretical method: 

 

 

 

For a floating object of known shape such as a ship or boat determination of meta-centric height 

can be calculated as follows. 

 

The initial equilibrium position of the object has its centre of Buoyancy, B, and the original water 

line is AC . When the object is tilted through a small angle the center of buoyancy will move to 

new position . As a result, there will be change in the shape of displaced fluid. In the new position          

is the waterline. The small wedge is submerged and the wedge 



is uncovered. Since the vertical equilibrium is not disturbed, the total weight of fluid displaced 

remains unchanged. 

 
Weight of wedge = Weight of wedge . 

 

In the waterline plan a small area, da at a distance x from the axis of rotation OO uncover the 

volume of the fluid is equal to 

Integrating over the whole wedge and multiplying by the specific weight w of the liquid, 

 

 
Weight of wedge 

Similarly, 

 
Weight of wedge 

Equating Equations ( ) and (), 

 
in which, this integral represents the first moment of the area of the waterline plane about OO , 

therefore the axis OO must pass through the centeroid of the waterline plane. 

 

Computation of the Meta-centric Height 

 
Refer to Figure(), the distance is 

 

 
The distance is calculated by taking moment about the centroidal axis . 

 

 

 
The integral  equals to zero, because axis symmetrically divides the submerged 

portion . 



At a distance x , 
 

Substituting it into the above equation gives 

 

Where I 0 is the second moment of area of water line plane about . Thus, 

 

 

 

 

 
 

Distance 

 

 

 
 

Since, 

 

Example: 

 

A large iceberge, floating in seawater, is of cubical shape and its average specific gravity is 0.9. 

If a 20-cm -high proportion of the iceberg is above the surface of the water, determine the volume 

of the iceberg if the specific gravity of the seawater is 1.025. 

 

Solution: 

 
Let the side of the cubical iceberg is h. 

 

Then volume of the submerged portion is = ( h -20) x h 2 

 

Total volume of the iceberg = h 3 

Now,                                                                                                                           

For flotation, weight of the iceberg = weight of the displaced water 

So, the side of the iceberg is 164 cm. 



Thus the volume of the iceberg is 4.41m3 

 

Example 

 

A log of wood of 1296 cm 2 cross section (square) with specific gravity 0.8 floats in water. Now 

if one of its edges is depressed to cause the log roll, find the period of roll. 

 

Solution 
 

 

 

 
 

 

Let, h be the depth of immersion and L be the length (perpendicular to the page) 

 

Since the section is square its dimension should be 0.36 m x 0.36 m 

For             flotation 

Weight of water displaced = Weight of the log 

 

 

 
Then, h = 0.288 m. 

 

 



 
 

 

Time period, and we have, 

Answer: 5.38 second 

Example 
 

To find the metacentre of a ship of 10,000 tonnes a weight of 55 tonnes is placed at a distance of 

6 m from the longitudinal centre plane to cause a heel through an angle of 3 0 . What is the 

metacentre height? Hence find the angle of heel and its direction when the ship is moving ahead 

and 2.8 MW is being transmitted by a single propeller shaft at the rate of 90 rpm. 

 

Solution 

 

Given data: Weight of the ship, W = 10 7 kg 

Angle of heel ? = 3 0 

Distance of the weight X = 6 m 

Weight placed w = 5.5 x 10 4 

Meta-centric height 

 

 
 

 
Answer:- 0.629 m and 0.270. 

 

Example 

 
A hollow cylinder closed in both end, of outside diameter 1.5 m and length of 3.8 m and specific 

weight 75 kN per cubic meter floats just in stable equilibrium condition. Find the thickness of the 

cylinder if the sea water has a specific weight of 10 kN per cubic meter. 



 

 
 

Solution 

 
Given data : Outside diameter 1.5 m 

Length L = 3.8 m 

Specific weight 75 kN/m 3 

Let the thickness t and immersion depth h . 

For flotation 

Weight of water displaced = weight of the cylinder 

 

 
h = 91 t 

 

 

For the cylinder to be in equilibrium 

 

Solving for t we have t = 0.0409 or 0.000829m 

Answer:- t = 0.83 mm 

Example 



A wooden cylinder of length L and diameter D is to be floated in stable equilibrium 

on a liquid keeping its axis vertical. What should be the relation between L and D 

if the specific gravity of liquid and that of the wood are 0.6 and 0.8 respectively? 

 

 
 

 

 

 
Solution 

 

Given data: Specific 

gravity of liquid = 0.6 

Specific gravity of liquid 

= 0.8 

If the depth of immersion is h 

Weight of water displaced = weight of the cylinder 

 

 
The depth of immersion . 
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