LESSON PLAN

Name of the Institute:		C. V. RAMAN POLYTECHNIC	
Department:		ELECTRICAL ENGINEERING	
Semester/Division/Branch:		3 rd SEM/EE	,
Subject Name with code: Total No. of Class (Required):		CIRCUIT AND NETWORK THEORY(TH-2) 60	
Class No.	Brief description	of the Topic/Chapter to be taught	Remarks
1	Introduction	,	
2	Magnetizing force, Intensity, MMF, flux and their relations		
3	Permeability, reluctance and permeance		
4	Analogy between electric a	nd Magnetic Circuits	
5	B-H Curve		
6	Series & parallel magnetic of	circuit.	
7	Hysteresis loop		<i>y</i>
8	Self Inductance and Mutual	Inductance	, r
9	Conductively coupled circu	it and mutual impedance, Dot convention	
10	Coefficient of coupling		
-11	Series and parallel connecti	on of coupled inductors.	
12	Solve numerical problems		
13	Active, Passive, Unilateral &	bilateral, Linear & Non linear elements	
14	Mesh Analysis, Mesh Equation	ons by inspection	
15	Super mesh Analysis		
16	Nodal Analysis, Nodal Equati	ons by inspection	
17	Super node Analysis.		
18	Source Transformation Techn	nique	

19	Star to delta and delta to star transformation		
20	Super position Theorem		
21	Thevenin's Theorem		
22	Norton's Theorem		
23	Norton's Theorem		
24	Maximum power Transfer Theorem.		
25	Maximum power Transfer Theorem.		
26			
27	Solve numerical problems (With Independent Sources Only)		
	A.C. through R-L, R-C & R-L-C Circuit		
28	Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by		
29	complex algebra method.		
30	Solution of problems of A.C. through R-L, R-C & R-L-C parallel		
31	Power factor & power triangle.		
32	Deduce expression for active, reactive, apparent power.		
33	Derive the resonant frequency of series resonance and parallel resonance		
34	Solve numerical problems		
35	Concept of poly-phase system and phase sequence		
36	Relation between phase and line quantities in star & delta connection		
37	Power equation in 3-phase balanced circuit.		
38	Solve numerical problems		
39	Measurement of 3-phase power by two wattmeter method.		
40	Solve numerical problems.		
41	Steady state & transient state response.		
42	Steady state & transient state response.		
43	Response to R-L, R-C & RLC circuit under DC condition.		
44	Response to R-L, R-C & RLC circuit under DC condition.		

45	Response to R-L, R-C & RLC circuit under DC condition.	
46	Solve numerical problems	
47	Open circuit impedance (z) parameters	
48	Short circuit admittance (y) parameters	
49	Transmission (ABCD) parameters	
50	Hybrid (h) parameters.	
51	Inter relationships of different parameters.	
52	T and p representation.	-
53	Solve numerical problems	
54	Solve numerical problems	-
55	Define filter	
56	Classification of pass Band, stop Band and cut-off frequency.	
57	Classification of filters.	
58	Constant – K low pass filter.	
59	Constant – K high pass filter.	
60	Constant – K Band pass filter, K Band elimination filter.	

Signature of the Faculty

Signature of the H.O.D