6^{TH} SEM ./ AE & IE/ELE. & ETC/ EE(I & C)/ ETC & COMM./E&TC/2023(S) Th-3 DIGITAL SIGNAL PROCESSING

Full Marks: 80 Time- 3 Hrs

Answer any five Questions including Q No.1& 2

Figures in the right hand margin indicates marks

1. Answer **All** questions

2 x 10

- a. State Sampling Theorem.
- b. Draw the following type of signals. (i)Continuous aperiodic signal (ii) Discrete periodic signal
- c. Define a causal signal and causal system.
- d. Draw a discrete time unit step signal and ramp signal and represent them mathematically.
- e. Determine z-transform of signal $y(n) = 3^n u(n)$.
- f. An input signal x(n) is applied to a LTI system having impulse response h(n), then write the expression for the output of the system.
- g. Find the inverse z-transform of $\mathbf{X}(\mathbf{Z}) = \left(\frac{\mathbf{Z}}{\mathbf{Z}-2}\right)$ (**ROC:** $|\mathbf{Z}| > 2$).
- h. Define ROC.

3201-202

- i. List any two types of digital filters.
- j. State any two applications of FFT algorithm.

2. Answer **Any Six** Questions

6 x 5

10

- a. Explain different steps of analog to digital signal conversion process.
- b. A causal LTI system is described by the difference equation

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n)$$

Determine impulse response, h(n) of the system.

- c. Write down the advantages of Digital Signal Processing over analog signal processing.
- d. State and explain any five properties of DFT.
- e. Let $x(n) = \delta(n) + 3\delta(n-1) 2\delta(n-3)$ and $h(n) = 2\delta(n+1) + \delta(n) 4\delta(n-1)$. Compute and plot y(n) = x(n) * h(n)
- f. Find 4-point DFT of $x(n) = \{1, 0, 1, 0\}$
- Find energy (E) and average power (P) of $x(n) = \left(\frac{1}{2}\right)^n u(n)$.
- With a neat block diagram explain different parts of digital to analog converter.

- 10 4 (i) Define LTI system. [1]
 - Determine whether the following systems are linear time invariant.[9] (ii)

(a)
$$y(n) = nx(n-4)$$
 (b) $y(n) = e^{x(n)}$ (c) $y(n)=x(n)-x(n-1)$

5 Consider the z – transform $X(Z) = \frac{3 - \frac{5}{6} z^{-1}}{(1 - \frac{1}{2} z^{-1})(1 - \frac{1}{2} z^{-1})}$ with $ROC: \frac{1}{4} < |x| < \frac{1}{3}$. 10

Determine its inverse z – transform.

6

- Differentiate between FIR and IIR filters. [5] 10
 - Determine circular convolution of the following sequences. [5] (ii)

$$g(n) = \{1, 2, 0, 1\}$$
 and $h(n) = \{2, 2, 1, 1\}$

3201-20230601121842 3201-20230601121842 Determine 8-point DFT of a sequence $x(n) = \{1, 2, 3, 0, 2, 1, 0, 4\}$ using radix -210

0713201-20230607121842