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Introduction  

 

Signal:  

 

A signal is defined as any physical quantity th a t varies with time, space, or any other in 

dependent variable or variables. Mathematically, we describe a signal as a function of one or 

mo re independent variables. For example, the functions  

s(t)= 5t  

describe a signal, one that varies linearly with the in d e p e n d e n t variable t (time).  

 

 
 

This function describes a signal of two in dependent variables x and y that could represent the two 

spatial coordinates in a p lane.  

System:  

A system may also be defined as a physical device th a t performs an operatioon a signal. For 

ex ample, a filter used to reduce the noise and interference corrupting desired in formation 

bearing signal is called a system .  

signal processing:  

 

W h en we pass a signal thrugh a system , as in filtering, we say that we have processed the 

signal. In this case the processing of the signal involves filtering the noise and interference 

from the desired signal. If the operation on the signal is n o n linear, the system is said to be 

non linear, and so forth . Such operations are usually referred to as signal rocessing. Analog 

signal processing:  

 

 
 

 

 

 

Digital signal processing:  
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Advantages of Digital over Analog Signal Processing :  

 

1- a digital programmable system allow s flexibility in re configuring the digital signal processing 

operations simply by changing the program .  

2- a digital system provides much better control of accuracy .  

 

3- Digital signals are easily stored on magnetic media (tape or disk) without deterioration or loss 

of signal fidelity beyond that introduced in the A /D conversion.  

4- digital implementation of the signal processing system is cheaper than analog signal 

processing. Limitations:  

 

One practical limitation is the speed of operation of A /D converters and digital signal 

processors. We shall see that signals having extremely wide band widths require fast-

sampling -rate A /D converters and fast digital signal processors. Hence there are analog 

signals with large bandwidths for which a digital processing approach is beyond the state of 

the art of digital hardware.  

Discrete time signals and systems  

CLASSIFICATION OF SIGNALS : There are 3 types of signals  

Continuous-time signals: Continuous-time signals or analog signals are defined for every value 

of time.  

Discrete-time signals :Discrete-time signals are defined only at certain specific values of time.  

Digital Signals: digital signal is defined as a function of an integer independent variable and 

its values are taken from a finite set of possible values, which are represented by a string of 

0's and l's .  

DISCRETE-TIME SIGNALS : A disc rete-time signal x{n) is a function of an in dependent 

variable that is an integer. discrete-time signal is n o t defined at instants between two 

successive samples. Simply, the signal x ( n ) is n o t defined for n o n integer values o f n. So 

x(n) was obtained from sampling an analog signal x a(t), then .i(n) = x a( nT) , where T is the 

sampling period (i.e., the time between successive samples).  

Representation of discrete-time signal :  
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A discrete-time signal can be represented in various way. But all can be represented graphically.  

 

 

 

 
 

Graphical representation of a discrete-time signal.  

 

Besides the graphical representation of a discrete-time signal or sequence as illustrated in above 

Fig. there are some alternative representations that are often more convenient to use. These are:  

1. Functional representation :  

 
 

2. Tabular representation :  

 

 

 
 

 

3. Sequence representation :An infinite-duration signal or sequence with the time origin (n 

= 

0)indicated by the symbol  ↑ is represented as  

 

 

 
A finite-duration sequence can be represented as  
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Some Elementary Discrete-Time Signals :  

In discrete-time signals and systems there are a number of basic signals that appear often and play 

an important role. These signals are defined below .  

 

1.Unit sample sequence/ unit impulse : It is denote d as δ(n) and is defined as  

 

 
the unit impulse sequence is a signal that is zero every where, except at n =0 where its value is 

unity. The graphical representation of δ(n ) is  

 

2. Unit step signal: It is denoted as u(n ) and is defined as  

 

 

The graphical re presentation of u(n ) is  

 

 

 

 
 

3. Unit ramp signal : It is denoted as ur(n) and is defined as  
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The graphical representation of u r(n) is  

 

 

 
 

 

 

 

 

4-Exponential signal : It is a sequence of the form  

 

 

If the parameter a is real, then x(n) is a real signal. illustratation of x(n) for various values of the 

parameter a is  

 

 
 

When the parameter a is complex valued , it can be expressed as  
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where r and ϴ are now the parameters. Hence we can express x( n ) as  

 

 

Classification of Discrete-Time Signals:  
 

1- Energy signals and power signals: The energy E of a signal x( n) is defined as 

 
If E is finite (i.e., 0 <E <∞), if E is finite , P = 0. then x( n ) is called an energy signal.  

 

Many signals that possess infinite energy, have a finite average power. The average power of a 

d iscrete-time signal x(n) is defined as  

 
If we define the signal energy of x(n) over the finite interval —N < n < N as  

 

the average power of the signal x( n) as  

 

if E is infinite and P is finite. the signal is called a power signal.  

 

2- Periodic signals and aperiodic signals: 

 

signal x( n) is periodic with period N ( N > 0) if an d only if  

 

the sinusoidal signal of the form  

 

is periodic when f0, is a rational number, that is, if f0 can be expressed as  

 
where k and N are integers.  

 

3- Symmetric (even) and antisymmetric (odd) signals : 

 

A real valued signal x ( n ) is called symmetric (even ) if  

 

O n the other hand , a signal x( n ) is called antisymmetric (odd ) if  
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We can illustrate that any arbitrary signal can be expressed as the sum of two signal 

components, one of which is even and the other odd. The even signal component is formed by 

adding x(n) to x ( —n) and dividing by 2. that is.  

 

Similarly, w e form an odd signal component x0(n) according to the relation  

 

So we obtain x(n),that is,  

 
 

Simple Manipulations of Discrete-Time Signals :  

 

Time shifting :  

A signal x (n ) may be shifted in time by replacing the independent variable n by n — k, w 

here k is an integer. If k is a positive integer, the time shift results in a delay of the signal by k 

units o f time. If k is a negative integer, the time shift results in an advance of the signal by \k\ 

units in time.  

Ex- A signal x( n ) is graphically illustrated in Fig. below. Show a graphical representation of the 

signals x( n — 3) and x( n + 2).  
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The signal x (n — 3) is obtained by delaying x(n) by three units in time. On the other hand, 

the signal x(n + 2 ) is obtained by advancing x ( n ) by two units in time. Note that delay 

corresponds to shifting a signal to the right, whereas advance implies shifting the signal to the 

left on the time axis.  

 

Time Folding : The operations of folding is defined by  

FD[x(n)] = x ( — n)  

 

Example:  
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Addition, multiplication, and scaling of sequences:  

 

Amplitude modifications include addition, multiplication, and scaling o f discrete-time 

signals. Amplitude scaling o f a signal by a constant A is accomplished by multiplying the 

value o f every signal sample by A.  

 

The sum of two signals x1( n) an d x2( n) is a signal y(n), whose value at any instant is equal 

to the sum of the values of these two signals at that instant, that is.  

 

 
 

The product of two signals is similarly defined on a sample -to -sample basis as  

 
 

DISCRETE-TIME SYSTEMS :  

A discrete-time system is a device or algorithm that operates on a discrete -time signal, called 

the input o rexcitation, according to some w ell-defined rule, to produce another discrete-time 

signal called the output or response of the system .  

We say that the input signal x(n) is Transformed by the system in to a signal y(n), and the 

general relationship Between x( n) and y( n ) as  

 

 

where the symbol  T denotes the transformation (also called an operator), or processing 

performed by the system on x(n) to produce y(n).  

 

Representation of Discrete-Time Systems :  

It is useful at this point to introduce a block diagram representation of discrete time systems. 

For this purpose we need to define some basic building blocks that can be interconnected to 

form complex systems.  

 

An adder: Figure below illustrates a system (adder) that perform s the addition o f two signal 

sequences to form another (the sum ) sequence, which we denote as y(n).  
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A constant multiplier: This operation is depicted by below Fig., and simply represents 

applying a scale factor on the input x (n).  

 
 

A signal multiplier: Figure below illustrates the multiplication of two signal sequences to 

form another (the product) sequence, denoted in the figure as y(n). we can view the 

multiplication  operation as memory less.  

 

A unit delay element: The unit delay is a special system that simply delays the signal passing 

th rough it by one sample. Fig. below illustrates such a system .If the input signal is x(n), the 

output is x( n — 1). In fact, the sample x{n — 1) is stored in memory at time n — 1 an d it is 

recalled fro m memory at time n to form y(n),  

 

 

T h e use o f the symbol z-1 to denote the unit of delay  

 

 

 
 

A unit advance element: In contrast to the unit delay, a unit advance moves the input x ( n ) 

ahead by one sample in time to yield x( n + 1). Fig. below illustrates this operation , with the 

operator z being used to denote the unit advance.  

 

 
 

Classification of Discrete-Time Systems :  
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There are various types of Discrete-Time Systems such as  

 

1-Static versus dynamic systems:  

A discrete-tim e system is called static or memory less if its output at any instant n depends at 

most on the input sample at the same time, but not on past or future samples of the input. In 

any other case, the system is said to be dynamic or to have memory .T h e systems described 

by the following input-output equations are both static or memory less  

 

y(n) = a x {n)  

y ( n ) = nx( n) + b x 3(n)  

 

On the other hand , the systems described by the following input-output relations are dynamic 

systems or systems with memory.  

 

Time-invariant versus time-variant systems: We can subdivide the general class of systems 

in to the two broad categories, time -invariant systems and time -variant systems. A system is 

called time-in variant if its input-output characteristics do not change with time. A relaxed 

system T is time invariant o rshift invariant if and only if  

 

implies that for every in p u t signal x(n) a n d every time shift k.  

 

Now if this output y{n, k) = y{n — k), for all possible values o f k, the system is time 

invariant. O n the other hand , if the output y(n, k ) ≠ y( n — k), even for one value o f k, the 

system is time variant.  

 

Linear versus nonlinear systems: The general class o f system s can also be subdivided into 

linear system s and nonlinear system s. A linear system is one that satisfies the superposition 

principle. Simply stated, the principle o f superposition requires that the response o f the 

system to a weighted sum o f signals be equal to the corresponding weighted sum of the 

responses (outputs) of the system to each of the individual input signals. A relaxed T system 

is linear if and only if  

 

 
for any arbitrary input sequences x\ ( n) and x 2(n), and any arbitrary constants a1 and a2.  

 

 

 

 



 

 14 | P a g e 

 
 

 
 

Causal versus noncausal systems:  

A system is said to be causal if the output of the system at any time n [i.e., y(n)] depends only 

on present and past inputs [i.e., x { n ), x(n - 1),x(n — 2 ) , . . . ] , but does not depend on 

future inputs [i.e., x(n + 1), x( n + 2 ) , . . . ] . In mathematical terms, the output of a causal 

system satisfies an equation of the form  

 

If a system does not satisfy this definition, it is called noncausal. Such a system has an output 

tha t depends not only on present and past inputs but also on future inputs.  

 

Stable versus unstable systems:  

An arbitrary relaxed system is said to be stable if an d only if every bounded input produces a 

bounded output ( i:e; BIBO ).  

 

The conditions that the input sequence x{n) and the output sequence y(n) are bounded is 

transla ted mathematically to mean that there exist some finite numbers, say M x and M y. 

such that  

 

 
 

for all n. If. for some bounded input sequence ,x(n), the output is unbounded (infinite), the 

system is classified as unstable .  

 

DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS:  

The linearity and time-invariance properties of the system , the response of the system to any 

arb itrary input signal can be expressed in terms of the unit sample response of the system . 

The gen eral form of the expression that relates the unit sample response of the system and 

the arbitrary input signal to the output signal, called the convolution sum or the convolution 

formula, is also derived. Thus we are able to determine the output of any linear, time-
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invariant system to any arbitrary input signal.  

 

Response of LTI Systems to Arbitrary Inputs:  

 

The Convolution Sum :  

An arbitrary input signal x( n) in to a weighted sum of impulses, We are now ready to 

determine the response of any relaxed linear system to any Input signal. First, we denote the 

response y(n, k) of the system to the input unit Sample sequence at n = k by the special 

symbol h(n, k), -∞<k < ∞. T h a t is,  

 
if the input is the arbitrary signal x(n) that is expressed as a sum of weighted impulses, that is.  

 

then the response of the system to x(n) is the corresponding sum of weighted outputs, that is,  

 

 

 

 

 

 
 

Clearly, the above equation follows from the superposition property of linear systems, and is 

know n as the superposition summation.th en by the time-invariance property , the response 

of the system to the delayed unit sample sequence δ(n - k) is  

 

Consequently , the superposition summation formula in reduces to  

 

 

The above formula gives the response y(n) of the LTI system as a function of the input signal 

x ( n ) and the unit sample (impulse) response h(n) is called a convolution sum.  

 

To summarize, the process of computing the convolution between x ( k ) and h(k) involves the 

following four steps.  



 

 16 | P a g e 

1. Folding. Fold h(k) about k = 0 to obtain h ( - k ) .  

2. Shifting, Shift h ( —k) by n0 to the right (left) if n0 is positive (negative), to obtain h(n0— k). 

3.Multiplication. Multiply x ( k ) by h(n0— k) to obtain the product sequencevn0(k) = x ( k ) 

h(n0— k).  

4.Summation. Sum all the values o f the product sequence vn0(k) to obtain the value of the 

output at time n = n0.  

Example:  

The impulse response of a linear time-invariant system is  

 
Determine the response of the system to the input signal  

 

 
Solution : We shall compute the convolution according to its formula. But we shall use 

graphs of the sequences to aid us in the computation. In Fig. below we illustrate the input 

signal sequence x(k) and the impulse response h{k) of the system, using k as the time index. 

The first step in the computation of the convolution sum is to fold h(k). The folded sequence 

h(-k) is illustrated inconsequent figs . Now we can compute the output at n = 0. according to 

the convolution formula which is  

 

Since the shift n = 0, we use h(—k) directly without shifting it. The product sequence  

 

We continue the computation by evaluating the response of the system at n = 1.  

  
Finally, the sum of all the values in the product sequence yields  

 
In a similar manner, we can obtain y(2) by shifting h ( - k ) two units to the right. And y(2) = 

8.  

Then y(3) = 3. y(4) = - 2 , y(5) = -1 .For n >5, we find that y(n) = 0 because the product 

sequences contain all zeros.  

Next we wish to evaluate y(n) for n < 0. We begin with n =-1.Then  
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Finally, summing over the values of the product sequence, we obtain  

 

then  
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Now we have the entire response of the system for -∞ <n < ∞. which we summarize below as  

 

 
 

Properties of Convolution: 1- 

Commutative law :  

 

2- Associative law :  

 

3-Distributive law :  

 

 

 

Finite-Duration and Infinite-Duration Impulse Response system:  

Linear time-invariant system s into two types, those that have a finite-duration Impulse 

response (FIR ) and those that have an infinite-duration impulse response(IIR ). Thus an fir 

system has an impulse response that is zero outside o f some Finite time interval.  

 

Stability and unstable Linear Time-Invariant Systems :  

We defined an arbitrary relaxed system as BIBO stable if and only if its output sequence y(n) 

is bounded for every bounded input x(n).  

The output is bounded if the impulse response of the system satisfies the condition  

 

 
T hat is, a linear time-invariant system is stable if its impulse response is absolutely 

summable  

.  

 

CORRELATION OF DISCRETE-TIME SIGNALS:  

 

A mathematical operation that closely resembles convolution is correlation .Just as in the case 

of convolution , two signal sequences are involved in correlation. correlation between the two 

signals is to measure the degree to which the two signals are similar and thus to extract some 

in formation that depends to a large extent on the application. Correlation o f signals is often 

encountered in radar, sonar, digital communications, geology, an do the rare as in science and 

engineering .  

Let us suppose that we have two signal sequences x( n ) and y(n) that we wish to 

compare. In radar and active sonar applications. x( n ) can represent the sampled version of 

the transmitted signal and y{n) can represent the sampled version of the received signal at the 

output of the analog -to -digital (A /D ) converter. If a target is p resent in the space being 

searched by the radar or sonar, the received signal y(n) consists of a delayed version of the 

transmitted signal, reflected from the target.  
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This comparison process is performed by means of the correlation operation of 2 different 

types.  

 

Cross-correlation and Autocorrelation Sequences :  

Suppose that we have two real signal sequences x( n ) and y( n) each of which has finite 

energy. T hecross-correlation o f x( n ) and y(n) is a sequence rxy(l), which is defined as  

 

 

or, equivalently , as  

 

The index l is the (time) shift (or lag) parameter and the subscripts x y on the cross-correlation 

se quencerxy(l), indicate the sequences being correlated .If we reverse the roles of x(n) an d 

y(n) and there fore reverse the order of the indices xy. we obtain the cross-correlation 

sequence  

 

 

 
or, equivalently ,  
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By comparing the above 4 equations we conclude that  

 

 

Hence , ryx(l) provides exactly the same information as rxy(l),with respect to the similarity of x 

( n) to y(n).  

 

Example:  

Determine the cross-correlation sequence rxy(l) of the sequences  

 

 
Solution : Let us use the definition of cross-correlation to compute rxy(l). For I = 0 w e have  

 

The product sequence v0(n) =x (n) y( n ) is  

 
and hence the sum over all values of n is  

 

For I > 0, we simply shift y(n) to the right relative to x(n ) hy l units, compute the product 

sequence vl(n) = x(n)y(n — I), and finally, sum over all values o f the product sequence. Thus 

we obtain  

 

 

 
 

For l< 0, we shift y(n) to the left relative to x(n) by l units, compute the product sequence 

vl(n) = x(n )y(n — I), and sum over all values of the product sequence. Thus we obtain the 

values of the cross-correlation sequence  

 

 

 

 
 

Therefore, the cross-correlation sequence of x{n) and y(n) is  

 

 
 

Then the convolution o f x( n) with y (—n) yields the cross-correlation rxy(l) that is,  
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Autocorrelation:  

when y(n) = x( n), we have the autocorrelation of x(n),which is defined as the sequence  

 

 

or, equivalently, as  

For 

finite-duration sequences,  

 

 

and  

where 

i = l, k = 0 for l> 0, and i = 0, k = l for l < 0.  

 

Properties of the Autocorrelation and Crosscorrelation Sequences :  

 

1- The cross-correlation sequence satisfies the condition that  

 
when y(n) = x ( n ), reduces to  

 

 

2- Th e normalized auto correlation sequence is defined as  

 

Similarly, we define the normalized cross-correlation sequence  

 

Now \ρxx{l)\ <1 and \ρxy{l)\ < 1, and hence these sequences are independent of signal scaling.  

3-the cross-correlation sequence satisfies the property  

 

the autocorrelation sequence satisfies the property  

 

Hence the auto correlation function is an even function.  

MODULE-2 
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The One-sided z-Transform: 

The one-sided or unilateral z-transform of a signal x(n) is defined by  

 

 
 …………………………………..(1.1)  

 

Properties:  

 

1. It does not contain information about the signal x(n) for negative values of 

time.  

2. It is unique only for causal signals.  

3. The one-sided z-transform 𝑋+(𝑧) of x(n) is identical to the two-sided z-

transform of the signal x(n)u(n). Shifting Property:  

 

 Time delay:  

 If   

 

 
 +    

𝑧 then  𝑥(𝑛 − 𝑘) ↔  𝑧−𝑘 [𝑋 +(𝑧) + ∑𝑘 

 ]  k > 0  ……(1.2)  

(−𝑛)𝑧𝑛𝑛=1 

 

 

In case x(n) is a causal signal  

 

 

 then   k > 0 .................................... (1.3)  

 
 Time advance:  

 

 

  k > 0........................... (1.4)  

 
Final Value Theorem:  

 

 If   

 

 then   
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The limit exists if the ROC of (𝑧 − 1)+(𝑧) includes the unit circle.  

Analysis of LTI System in z-domain: 

 

Response of Systems with Rational System:  

 

We consider a linear constant coefficient difference equation:  

 

 (𝑛) = − ∑𝑁
𝑘=1 𝑎𝑘 𝑦(𝑛 − 𝑘) + ∑𝑀

𝑘=0 𝑏𝑘𝑥(𝑛 − 𝑘)  ……………………….  

(2.1)  

 

corresponding system function H(z) is given by  

 

  ………………………………………….. (2.2)  

we apply an input signal x(n) whose z-transform is X(z). For and  

zero initial conditions, the z-transform of the output of the system has the form  

 

 ……………………………….... (2.3)  

 

 Suppose the system contains simple poles  𝑝1 , 𝑝2 , … … … , 𝑝𝑁and X(z) contains poles  

𝑞1 , 𝑞2 , … … … , 𝑞𝐿, where 𝑝𝑘 ≠ 𝑞𝑚for all k = 1, 2 , …… , N and m = 1, 2 , ……. , L. 

Assuming no pole-zero cancellation the partial fraction expansion of Y(z) yields  

 

 

The inverse transform of Y(z) is the output signal y(n) from the system:  

 

  …………………...  

(2.5)  

 

where scale factors {Ak}and {Qk}are functions of both sets of poles {pk}and {qk}.  

 

Response of Pole-Zero Systems with Non-zero Initial Conditions:  

 

We consider the input signal x(n) to be a causal signal applied at n=0. The effects of all 

previous input signals to the system are reflected in the initial conditions y(-1), y(-2), ........ , 

y(-N). We are interested in determining the output y(n) for 𝑛 ≥ 0.  

 

 𝑁  𝑘  𝑀  

𝑌+(𝑧) = − ∑ 𝑎𝑘𝑧−𝑘 [𝑌+(𝑧) + ∑ 𝑦(−𝑛)𝑧𝑛] + ∑ 𝑏𝑘𝑧−𝑘𝑋+(𝑧)  
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 𝑘=1  𝑛=1  𝑘=0  

Causality and Stability:  

 

A causal linear time invariant system is one whose unit sample response h(n) satisfies the 

condition  

 

 h(n) = 0  n < 0  

 

An LTI system is causal if and only if the ROC of the system function is the exterior of a 

circle of radius 𝑟 < ∞, including the point 𝑧 = ∞.  

A necessary and sufficient condition for an LTI system to be BIBO stable is  

 

 

 
An LTI system is BIBO stable if and only if the ROC of the system function includes the unit 

circle.  

Consequently, a causal and stable system must have a system function that converges for |𝑧| 

> 𝑟 < 1. Since the ROC cannot contain any poles of H(z) , it follows that a causal linear 

time- invariant system is BIBO stable if and only if all the poles of H(z) are inside the unit 

circle. The DFT as a Linear Transformation: 

 

The formulas for the DFT and IDFT may be expressed as  

 

 

 𝑁 ,  𝑘 = 0,1, … . , 𝑁 − 1  … … … … … . . (3.1)  

 

 

 

 where   

 

which is an Nth root of unity.  

 

The computation of each point of the DFT can be accomplished by N complex multiplications 

and (N-1) complex additions. Hence the N-point DFT values can be computed in a total of N2 

c
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omplex multiplications and N(N-1) complex additions.  

Let us define an N-point vector xNof the signal sequence x(n), n=0,1,…,N-1, an N-point 

vector XN of frequency samples, and an 𝑁 × 𝑁 matrix 𝑾𝑁as  

  

 

With these definitions, the N-point DFT may be expressed in the matrix form as  

 

 

 
where is the matrix of the linear transformation. is a symmetric matrix. If we assume 

that the inverse of exists, then we also write  

 

IDFT can also be expressed as  

 

 

where denotes the complex conjugate of the matrix . Comparison of equations 3.5 and  

3.6 leads us to conclude that  

 

 

which in turn implies  

 

 

where is a identity matrix.  

 

 

 

Circular Convolution: 

 

Suppose that we have two finite-duration sequences of length N, and . Their 

respective N point DFTs are  
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Multiplying the above two DFTs we get:  

 

 

IDFT of { } is  

 

 

Substituting for and in (4.3) using DFTs given in (4.1) and (4.2), we obtain  

 

 
The inner sum in the brackets in (4.4) has the form  

 

wh

ere is defined as  

 

  

Consequently,  
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If we substitute the result in (4.6) into (4.4) , we obtain  

 

 

 
The above convolution sum is called circular convolution. Thus we conclude that 

multiplication of the DFTs of two sequences is equivalent to the circular convolution of the 
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Linear Filtering Methods Based on the DFT:  

 

Use of the DFT in Linear Filtering:  

 

Suppose we have a finite-duration sequence x(n) of length L which excites an FIR filter of 

length M. Let  

 

where is the impulse response of the FIR filter.  

The output sequence of the FIR filter:  

 

 

The duration of is  

 
The frequency-domain equivalent to (5.1) is  

 

 

If the sequence  is to be represented uniquely in the frequency domain by samples of its 

spectrum  at a set of discrete frequencies, the number of distinct samples must equal or 

exceed Therefore, a DFT of size  is required to represent {y(n)} in 

the frequency domain.  

 

 

 

 

Now if  

 

 

then  

 

 

 

where and are the N-point DFTs of the corresponding sequences x(n) and h(n), 

respectively. Since the sequences x(n) and h(n) have a duration less than N, we simply pad 

these sequences with zeros to increase their length to N.  

Since the ( )-point DFT of the output sequence y(n) is sufficient to represent 

y(n) in the frequency domain, it follows that the multiplication of the N-point DFTs X(k) and 

H
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(k) followed by the computation of the N-point IDFT, must yield sequence {y(n)}.  

Thus, the N-point circular convolution of x(n) with h(n) must be equivalent to the linear 

convolution of x(n) with h(n). Thus with zero padding, the DFT can be used to perform 

linear filtering. Filtering of Long Data Sequences: 

 

Let the FIR filter has duration M. The input data sequence is segmented into blocks of L 

points, where , by assumption, . Overlap-save method:  

 

Size of input data blocks,  

 
DFTs and IDFTs are of length .  

 

Each data block consists of the last data points of the previous data block followed by 

new data points to form a data sequence of length . An -point DFT is 

computed for each data block.  

The impulse response of the FIR filter is increased in length by appending zeros and an  

-point DFT of the sequence is computed once and stored. The multiplication of the two - 

point DFTs { } and { } for the mth block of data yields  

 

 
Then the N-point IDFT yields the result  

 

 

Since the data record is of length , the first  points of  are corrupted by aliasing 

and must be discarded. The last points of  are exactly same as the result from linear 

convolution and, as a consequence,  

 

 

 
To avoid loss of data due to aliasing, the last  points of each data record are saved and 

these points become the first  points of the subsequent record. To begin the processing, 

the first points of the first record are set to zero. Thus blocks of data sequences are:  
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𝑥  

 

 
 

 
y1(n)  

Discard M-1 points  

 

 

 

Discard M-1 points  

 

 
Discard M-1 points  

(Linear FIR filtering by the overlap-save method)  

 

Overlap-add method:  

 

 
y2(n)  

 
y3(n)  

Input  sig   
 

 
 

Output  signal  

M - 1  

M - 1  zeros  L  

x 3 ) n (  

x 2 ) n (  

x 1 ) ( n  

nal  L  L  L  
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Size of input block =  

 
Size of the DFTs and IDFT is .  

 

To each data block we append zeros and compute the -point DFT. The data blocks 

may be represented as  

 

 

 

 

 

 

 
and so on. The two -point DFTs are multiplied together to form  

 

 

 
The IDFT yields data blocks of length that are free of aliasing, since the size of the DFTs 

and IDFT is  and the sequences are increased to -points by appending zeros 

to each block.  

Since each data block is terminated with M-1 zeros , the last M-1 points from each output 

block must be overlapped and added to the first M-1 points of the succeeding block. Hence 

this method is called the overlap-add method. The output sequence is:  
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(Linear FIR filtering by the overlap-add method)  

 

 

The Discrete Cosine Transform :  

 

Forward DCT:  

 

Let an N-point sequence x(n) which is real and even, that is,  

 

(𝑛) = 𝑥(𝑁 − 𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1  

 
Let s(n) be a 2N-point even symmetric extension of x(n) defined by  

 

Output  data  

y 1 ( n )  
 
 
 

M - 1  points  add  together  y 2 ( n )  
 
 

M - 1  points  add  together  

 

 

y 3 ( n )  

Input  data  L  L  L  

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 1 ) ( n  

M - 1  zeros  

x 2 ) n (  

M - 1  zeros  

x 3 n ( )  
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The DCT of x(n) can be computed by taking the 2N-point DFT of s(n) and multiplying the 

result by . The forward DCT is defined by  

 

 

 

Inverse DCT  

 

  

 

DCT as an Orthogonal Transform  

The DCT matrix of the sequence  is a real orthogonal matrix, 

that is, it satisfies  

 

 

 

Orthogonality simplifies the computation of the inverse transform because it replaces matrix 

inversion by matrix transposition. Circular Correlation :  

 

If x(n) and y(n) are two periodic sequences, each with period N, then their cross correlation 

sequence is defined as  

 

 

Module-III  

Fast Fourier Transform Algorithms:  

1.Introduction 

 

For a finite-duration sequence x(n) of length N, the DFT sum may be written as  

 

 

  

 

 

 

 



 

 35 | P a g e 

Where 𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁. There are a total of N values of X(.) ranging from X(0) to X(N–1). The 

calculation of X(0) involves no multiplications at all since every product term involves 𝑊𝑁
0 = 𝑒−𝑗0 

= 1. Further, the first term in the sum always involves 𝑊𝑁
0or 𝑒−𝑗0 = 1 and therefore does not 

require a multiplication. Each X(.) calculation other than X(0) thus involves (N-1) complex 

multiplications. And each X(.) involves (N–1) complex additions. Since there are N values of X(.) 

the overall DFT requires (N-1)2 complex multiplications and N(N-1) complex additions. For large N 

we may round these off to N2 complex multiplications and the same number of complex additions.  

Each complex multiplication is of the form  

 

(A + jB) (C + jD) = (AC – BD) + j(BC + AD)  

 

and therefore requires four real multiplications and two real additions. Each complex addition is of 

the form  

(A + jB) + (C + jD) = (A + C) + j(B + D)  

 

and requires two real additions. Thus the computation of all N values of the DFT requires 4N2 real 

multiplications and 4N2 (= 2N2 + 2N2) real additions. Efficient algorithms which reduce the number 

of multiply-and-add operations are known by the name of fast Fourier transform (FFT). The 

Cooley-Tukey and Sande-Tukey FFT algorithms exploit the following properties of the twiddle 

factor (phase factor), 𝑊𝑁 = 𝑒−𝑗2𝜋/(the factor 𝑒−𝑗2𝜋/𝑁is called the Nth principal root of 1):  

1. Symmetry property  

2. Periodicity property  

 

To illustrate, for the case of N = 8, these properties result in the following relations:  

 

The use of these properties reduces the number of complex multiplications from N  

(actually the number of multiplications is less than this because several of the multiplications by 

𝑊𝑁
𝑟are really multiplications by ±1 or ±j and don’t count); and the number of complex additions 

are reduced from N 2to N log2 𝑁 . Thus, with each complex multiplication requiring four real 

multiplications and two real additions and each complex addition requiring two real additions, the 

computation of all N values of the DFT requires  

 

Number of real multiplications  

Number of real additions  

We can get a rough comparison of the speed advantage of an FFT over a DFT by computing the 
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number of multiplications for each since these are usually more time consuming than additions. For 

instance, for N = 8 the DFT, using the above formula, would need 82 = 64 complex multiplications, 

but the radix-2 FFT requires only .  

 

 
 

We consider first the case where the length N of the sequence is an integral power of 2, that is, 

N=2νwhere ν is an integer. These are called radix-2 algorithms of which the decimation-in-time 

(DIT) version is also known as the Cooley-Tukey algorithm and the decimation-in-frequency 

(DIF) version is also known as the Sande-Tukey algorithm. We show first how the algorithms 

work; their derivation is given later. For a radix of (r = 2), the elementary computation (EC) 

known as the butterfly consists of a single complex multiplication and two complex additions.  

If the number of points, N, can be expressed as N = r m, and if the computation algorithm is carried 

out by means of a succession of r-point transforms, the resultant FFT is called a radixralgorithm. 

In a radix-r FFT, an elementary computation consists of an r-point DFT followed by the 

multiplication of the r results by the appropriate twiddle factor. The number of ECs required is  

 

 

which decreases as r increases. Of course, the complexity of an EC increases with increasing r. For 

r = 4, the EC requires three complex multiplications and several complex additions.  

 

Suppose that we desire an N-point DFT where N is a composite number that can be  

factored into the product of integers  

N = N1 N2 … Nm  

If, for instance, N = 64 and m = 3, we might factor N into the product 64 = 4 x 4 x 4, and the 64-

point transform can be viewed as a three-dimensional 4 x 4 x 4 transform. If N is a prime number 

so that factorization of N is not possible, the original signal can be zero-padded and the resulting 

new composite number of points can be factored.  

2. Radix-2 decimation-in-time FFT (Cooley-Tukey) 

 

Procedure and important points  

 

1. The number of input samples is N = 2νwhere ν is an integer.  

2. The input sequence is shuffled through bit-reversal. The index n of the sequence x(n) is 

expressed in binary and then reversed.  

3. The number of stages in the flow graph is given by ν = log2 𝑁.  

4. Each stage consists of N/2 butterflies.  

5. Inputs/outputs for each butterfly are separated as follows:  

Separation = 2m-1 samples where m = stage index, stages being numbered from left to 
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right (that is, m = 1 for stage 1, m = 2 for stage 2 etc.). This amounts to separation 

increasing from left to right in the order 1, 2, 4… N/2.  

 

 

 
 

6. The number of complex additions = 𝑁 log2 𝑁 and the number of complex multiplications  

.  

7. The elementary computation block in the flow graph, called the butterfly, is shown here.  

This is an in-place calculation in that the outputs (A – B  can be 

computed and stored in the same locations as A and B.  

 

 

Example 1 Radix-2, 8-point, decimation-in-time FFT for the sequence  

  

n→ 0 1 2 3 4 5 6 7 x(n) = {1, 2 3 4 –4 –3 –2 –1}   

  

 

One of the elementary computations is shown below:  

 

 
The signal flow graph follows:  
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The DFT is  

 

X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)}  

3. Radix-2 decimation-in-frequency FFT (Sande-Tukey) 

 

Procedure and important points  

 

1. The number of input samples is N = 2νwhere ν is an integer.  

2. The input sequence is in natural order; the output is in bit-reversed order.  

3. The number of stages in the flow graph is given by ν = log2 𝑁.  

4. Each stage consists of N/2 butterflies.  

5. Inputs/outputs for each butterfly are separated in the reverse order from that of the DIT. 

The separation decreases from left to right in the order N/2, … , 4, 2, 1.  

6. The number of complex additions = N log2 𝑁 and the number of complex multiplications 

is .  

7. The basic computation block in the flow graph of the DIF FFT is the butterfly shown 

here.  

This is an in-place calculation in that the two outputs (A + B) and (A – B) 𝑊𝑁
𝑘can be 

computed and stored in the same locations as A and B.  

 

 
 

 

 

Example 2: Radix-2, 8-point, decimation-in-frequency FFT for the sequence  
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n→ 0 1 2 3 4 5 6 7  

 

x(n) = {1, 2 3 4 –4 –3 –2 –1}  

 

Solution :  

 

The twiddle factors are the same as in the DIT FFT done earlier (both being 8-point DFTs):  

 

 

 

One of the elementary computations is shown below:  

 

 
The signal flow graph follows:  

 

 

 

 

The DFT is  
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X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)}  

 

 

(DIT Template)  

 

The elementary computation (Butterfly):  

 

 

 

 

 
 

The signal flow graph:  

 
 

 

 

 

 

 

(DIF Template)  

 

The elementary computation (Butterfly):  
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The signal flow graph:  

 
 

16-point DIF FFT  
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4.Inverse DFT using the FFT algorithm 

The inverse DFT of an N-point sequence {X(k), k = 1, 2, … , (N–1)} is defined as  

 

  𝑛 = 0,1, … , 𝑁 − 1  

 

Where 𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁. Take the complex conjugate of x(n) and multiply by N to get  

 

𝑁−1  

𝑁𝑥∗(𝑛) = ∑ 𝑋∗(𝑘)𝑊𝑁
𝑘𝑛 

𝑘=0  

 
The right hand side of the above equation is simply the DFT of the sequence 𝑋∗(𝑘) and can be 

computed by using any FFT algorithm. The desired output sequence is then found by taking the 

conjugate of the result and dividing by N  
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Example 3: Given the DFT sequence X(k) = {0, (–1–j), j, (2+j), 0, (2–j), –j, (–1+j)} obtain the 

IDFT x(n) using the DIF FFT algorithm.  

 

Solution:  

 

This is an 8-point IDFT. The 8-point twiddle factors are, as calculated earlier,  

 

 

 

 

 

The elementary computation (Butterfly) is shown below:  

 

 

 

 
The signal flow graph follows:  

 

 

 



 

 44 | P a g e 

 
 

The output at stage 3 gives us the values {8𝑥∗(𝑛)} in bit-reversed order:  

 

{8𝑥∗(𝑛)}𝑏𝑖𝑡𝑟𝑒𝑣𝑜𝑟𝑑𝑒𝑟= {2, –2, 4, –4, –6.24, 2.24, 6.24, –2.24}  

 

The IDFT is given by arranging the data in normal order, taking the complex conjugate of the 

sequence and dividing by 8:  

 

{8𝑥∗(𝑛)}𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑟𝑑𝑒𝑟= {2, –6.24, 4, 6.24, –2, 2.24, –4, –2.24}  

 

 ( ) { } 

Example 4: Given the DFT sequence X(k) = {0, (1–j), j, (2+j), 0, (2–j), (–1+j), –j}, obtain the IDFT 

x(n) using the DIF FFT algorithm.  

 

Solution:  

There is no conjugate symmetry in {X(k)}. Using MATLAB  

X = [0, 1-1j, 1j, 2+1j, 0, 2-1j, -1+1j, -1j] 

x = ifft(X)  

 

The IDFT is  

 

x(n) = {0.5, (-0.44 + 0.037i), (0.375 - 0.125i), (0.088 + 0.14i), (-0.75 + 0.5i), (0.44 + 0.21i), (-0.125  

- 0.375i), (-0.088 - 0.39i)}  

5.APPLICATIONS OF FFT ALGORITHMS:  

1. Efficient Computation of the DFT of Two Real Sequences 
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The FFT algorithm is designed to perform complex multiplications and additions, even though the 

input data may be real valued. The basic reason for this situation is that the phase factors are 

complex and hence, after the first stage of the algorithm, all variables are basically complex-valued. 

In view of the fact that the algorithm can handle complex -valued input sequences, we can exploit 

this capability in the computation of the DFT of two real-valued sequences. Suppose that 𝑥1(𝑛) and 

𝑥2(𝑛) are two real-valued sequences of length N, and let x(n) be a complex-valued sequence 

defined as  

 

 (𝑛) = 𝑥1(𝑛) + 𝑗𝑥2(𝑛)  0 ≤ 𝑛 ≤ 𝑁 − 1  

 
The DFT operation is linear and hence the DFT of x(n) can be expressed as  

 

(𝑘) = 𝑋1(𝑘) + 𝑗𝑋2(𝑘)  

 
The sequences 𝑥1(𝑛) and 𝑥2(𝑛)can be expressed in terms of x(n) as follows:  

 

 

Hence the DFTs of 𝑥1(𝑛) and 𝑥2(𝑛) are  

 

Recall that the DFT of 𝑥∗(𝑛) is 𝑋∗(𝑁 − 𝑘). Therefore  

 

 

 

Thus, by performing a single DFT on the complex-valued sequence x(n), we have obtained the 

DFT of the two real sequences with only a small amount of additional computation that is involved 

in computing 𝑋1(𝑘) and 𝑋2(𝑘)from X(k).  

2.Efficient Computation of the DFT of a 2N-Point Real Sequence 

 

Suppose that g(n) is a real-valued sequence of 2N points. We now demonstrate how to obtain the 

2N-point DFT of g(n) from computation of one N-point DFT involving complex-valued data. First, 

we define  
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𝑥1(𝑛) = 𝑔(2𝑛)  

 

𝑥2(𝑛) = 𝑔(2𝑛 + 1)  

 
Thus we have subdivided the 2N-point real sequence into two N-point real sequences. Now we can 

apply the method described in the preceding section.  

Let x(n) be the N-point complex-valued sequence  

 

 

(𝑛) = 𝑥1(𝑛) + 𝑗𝑥2(𝑛)  

 
From the results of the preceding section, we have  

  

 

Finally, we must express the 2N-point DFT in terms of the two N-point DFTs, 𝑋1(𝑘) and 𝑋2(𝑘). To 

accomplish this, we proceed as in the decimation-in-time FFT algorithm, namely,  

 

 𝑁−1  𝑁−1  

(𝑘) = ∑ 𝑔(2𝑛)𝑊2𝑛𝑘 + ∑ 𝑔(2𝑛 + 1)𝑊(2𝑛+1)𝑘 

 2𝑁  2𝑁  
 𝑛=0  𝑛=0  

 

 𝑁−1  𝑁−1  

= ∑ 𝑥1(𝑛)𝑊𝑛𝑘 + 𝑊𝑘 ∑ 𝑥2(𝑛)𝑊𝑛𝑘 
  𝑁  2𝑁  𝑁  
 𝑛=0  𝑛=0  

 

Consequently,  

 

(𝑘) = 𝑋1(𝑘) + 𝑊2
𝑘𝑁𝑋2(𝑘)  𝑘 = 0,1, … . , 𝑁 − 1 (𝑘 + 

𝑁) = 𝑋1(𝑘) − 𝑊2
𝑘𝑁𝑋2(𝑘)  𝑘 = 0,1, … . , 𝑁 − 1  

 

 

Thus we have computed the DFT of a 2N-point real sequence from one N-point DFT and some 

additional computation.  

6.The Chirp-z Transform Algorithm:  
 

 

 

 

 

 

 

 

 

 



 

 47 | P a g e 

The DFT of an N-point data sequence x(n) has been viewed as the z-transform of 𝑥1(𝑛) evaluated at 

N equally spaced points on the unit circle. It has also been viewed as N equally spaced samples of 

the Fourier transform of the data sequence x(n). In this section we consider the evaluation of X(z) 

on other contours in the z-plane, including the unit circle.  

Suppose that we wish to compute the values of the z-transform of x(n) at a set of points {zk}. Then,  

  𝑘 = 0,1, … , 𝐿 − 1  

 
For example, if the contour is a circle of radius r and the zkare N equally spaced points, then  

 

 𝑧𝑘 = 𝑟𝑒𝑗2𝜋𝑘𝑛/𝑁 𝑘 = 0,1,2, … , 𝑁 − 1  

 

𝑁−1  

 (zk) =   ∑[𝑥(𝑛)𝑟−𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁 𝑘 = 0,1,2, … , 𝑁 − 1  
𝑛=0  

 
In this case the FFT algorithm can be applied on the modified sequence (𝑛)𝑟−𝑛.  

More generally, suppose that the points zkin the z-plane fall on an arc which begins at  

some point  

 

z0 = r0𝑒𝑗𝛳0  

and spirals either in toward the origin or out away from the origin such that the points zkare defined 

as  

𝑘 zk = r0𝑒𝑗𝛳0 (R0𝑒𝑗𝜙0 ) 𝑘 = 0,1, … , 𝐿 − 1  

Note that if R0 < 1, the points fall on a contour that spirals toward the origin and if R0 > 1, the 

contour spirals away from the origin. If Ro = 1, the contour is a circular arc of radius r0. If r0 = 1 

and R0 = l, the contour is an arc of the unit circle. The latter contour would allow us to compute the 

frequency content of the sequence x(n) at a dense set of L frequencies in the range covered by the 

arc without having to compute a large DFT, that is, a DFT of the sequence x(n) padded with many 

zeros to obtain the desired resolution in frequency. Finally, if r0 = R0 = 1, = 0, ϴ0 = 0, ϕ0 = 2n / N, 

and L = N, the contour is the entire unit circle and the frequencies are those of the DFT.  
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When points {zk} are substituted into the expression for the z transform, we obtain  

 

 

𝑁−1  

(zk) = ∑ 𝑥(𝑛)𝑧𝑘
−𝑛 

𝑛=0  

 

𝑁−1  
−𝑛 

= ∑ (𝑛)(r0 𝑒𝑗𝛳0 ) 𝑉−𝑛𝑘𝑛=0  
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where, by definition, 𝑉 = R0𝑒𝑗𝜙0 

 

We can express the above equation in the form of a convolution, by noting that  

 

 

 

Let us define a new sequence g(n) as  

 0 −𝑛 2/2 

 (𝑛) = 𝑥(𝑛)(r  0  𝑒𝑗𝛳 ) 𝑉−𝑛  

 
 

Then,   
𝑁−1  

(zk ) = 𝑉−𝑘2/2 ∑ 𝑔(𝑛)𝑉(𝑘−𝑛)2/2  

𝑛=0  

 

The summation in the above expression can be interpreted as the convolution of the sequence g(n) 

with the impulse response h(n) of a filter, where  

ℎ(𝑛) = 𝑉𝑛2/2  

 

Hence,    

 

 

Where y(k) is the output of the filter  

 

 𝑁−1   

 (𝑘) = ∑ 𝑔(𝑛)ℎ(𝑘 − 𝑛)  𝑘 = 0,1, … , 𝐿 − 1  
𝑛=0  

 

We observe that both h(n) and g(n) are complex-valued sequences. The sequence h(n) with R0 = 1 

has the form of a complex exponential with argument 𝑤𝑛 = 𝑛2𝜙0/2 = (𝑛𝜙0/2)𝑛. The quantity 

𝑛𝜙0/2 represents the frequency of the complex exponential signal, which increases linearly with 

time. Such signals are used in radar systems and are called chirp signals. Hence the z-transform 

evaluated is called the chirp-z transform.  

MODULE 4: 

 

 

 

 
 
 

 

 
 
 

 

 

 



 

 50 | P a g e 

Structures for FIR and IIR Systems: 

Structure for FIR Systems: 

In general a FIR system is described by the difference equation  

 

 M 1  

 y(n) bk x(n k)  

 k 0  

Or equivalently, by the system function  

 

M 1  

H (z) k 0 b k z k  

 

1.Direct-Form Structure: 
 

The direct-form realization follows the convolution summation  

 

 
 

 

 

 

 

Direct form realisation of FIR system  

We observe that this structure requires M-1 memory locations for storing the M-1 

previous inputs, and has a complexity of M multiplications and M-1 additions per 

output point. Since the output consists of a weighted linear combination of M-1 past 

values of the input and the weighted current value of the input, the structure in above 

figure, resembles a tapped delay line or a transversal system consequently, the direct- 

form realization is often called a transversal or tapped-delay-line filter.  
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2.Cascade-Form Structures: 

The cascade realization follows naturally from the system function given by  

 

 

It is simple matter to factor H(z) into second order FIR system so that  

 M  

H (z) Hk (z)  

k 1  

 

Where Hk (z)=bk0+bk1z
-1+bk2z

-2 , k=1,2,3 ............... k  

And K is the integer part of (M + l) /2. The filter parameter b0 may be equally 

distributed among the K filter sections, such that  or it may be 

assigned to a single filter section. The zeros of H ( z ) are grouped in pairs to produce 

the second-order FIR systems. It is always desirable to form pairs of complex- 

conjugate roots so that the coefficients {bki} are real valued. On the other hand, real- 

valued roots can be paired in any arbitrary manner. The cascade-form realization 

along with the basic second-order section is shown below.  

 

 

Cascade Realisation of a FIR system  

Design of Digital Filters: 

Causality and Its Implications: 

Let us consider the issue of causality in more detail by examining the impulse 

res
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ponse h(n) of an ideal low pass filter with frequency response characteristic  

 1 c 

H(w)={  

 0  c  

 

The impulse response of the filter is   

 
c, n  0  

 

h(n)={ csin cn, n  0  

  cn 

 

 

 

 

 
 

Unit sample response of an ideal low pass filter  

A plot of h{n) for wc = π/ 4 is illustrated in the above figure. It is clear that the ideal 

low pass filter is noncausal and hence it cannot be realized in practice.  

One possible solution is to introduce a large delay n0 in h(n) and arbitrarily to set 

h(n)=0 for n < n0. However, the resulting system no longer has an ideal frequency 

response characteristic. Indeed, if we set h(n) = 0 for n < n0, the Fourier series 
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expansion of H(w) results in the Gibbs phenomenon.  

 

Paley-Wiener Theorem: 

If h(n) has finite energy and h(n) = 0 for n < 0, then  

 

 

Conversely, if |H(ω)| is square integrable and if the integral in the above equation is 

finite, then we can associate with |H(ω)| a phase response     , so that the resulting 

filter with frequency response H(ω)=│H(ω)│ejθ(ω) is causal.  

One important conclusion that we draw from the Paley-Wiener theorem is that the 

magnitude function |H(ω)| can be zero at some frequencies, but it can’t be zero over 

any finite band of frequencies, since the integral then becomes infinite. Consequently 

any ideal filter is noncausal.  

Apparently causalty imposes some tight constraints on a linear time invariant 

system. In addition to the Paley-Wiener condition causalty also implies a strong 

relation between HR(ω) and HI(ω), the real and imaginary components of the 

frequency response H(ω).To illustrate this dependence we decompose h(n).That 

iseven and an odd sequence, that is  

 

  H(n)=he(n)+ho(n)  

1 1  

Where he(n)=  [h(n)+h(-n)] and   [h(n)-h(-n)]  

2 2  

 

Now, if h(n) is causal ,it is possible to recover h(n) from its even part he(n) for 

0≤n≤∞ or from its odd component ho(n) for 1≤n≤∞. Indeed, it can be easily seen that  

 h(n)=2he(n)u(n)-he(0)δ(n)  n≥0  
 

and  

 h(n)=2ho(n)u(n)-ho(0)δ(n)  n≥1  

Since h0 (n) = 0 for n = 0, we cannot recover h(0) from h0 (n) and hence we also must 
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know h(0). In any case, it is apparent that h0 (n) = he(n) for n > 1, so there is a strong 

relationship between h0 (n) and he(n).  

If h (n) is absolutely summable (i.e., BIBO stable), the frequency response H(w) 

exists, and  

 

 

In addition, if h(n) is real valued and causal, the symmetry properties of the Fourier 

transform imply that  

 

 

Since h(n) is completely specified by he(n), it follows that H(ω) is completely 

determined if we know HR(ω).alternatively H(ω) is completely determined from 

HI(ω) and h(0).In short HR(ω) and HI(ω) are independent and cannot be specified 

independently if the system is causal. Equivalently the magnitude and phase 

responses of a causal filter are interdependent and hence cannot be specified 

independently.  

Design of Linear Phase FIR filters using different windows: 

In many cases a linear phase characteristics is required through the passband of the 

filter. It can be shown that causal IIR filter cannot produce a linear phase 

characteristics and only special forms of causal FIR filters can give linear phase. If 

{h[n]} represents the impulse response of a discrete time linear system a necessary 

and sufficient condition for linear phase is that {h[n]} have finite duration N, that it 

be symmetric about its midpoint, i.e.  
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For N even we get a non-integer delay, which will cause the value of the sequence to 

change.  

One approach to design FIR filters linear phase is to use windows. The easiest way to 

obtain FIR filter is to simply truncate the impulse response of an IIR filter. If 

{hd[n]}is the impulse response of the designed FIR filter then the fir filter with 

impulse response {h[n]} can be obtained as follows.  

H[n]={ hd[n], N1 n N2  

0, otherwise  

 

This can be thought of as being formed by a product of {hd[n]} and a window 

function {w[n]} {h[n]}= {hd[n]} {w[n]} where {w[n]} is the window 

function.  

Using modulation property of fourier transform  

 

 1  jω) -w(ejω)]  

H(ejω)=   [ Hd(e 

2  
 

In general for smaller N values spreading of main lobe more, and for larger N 

narrower thr main lobe and │ H(ejω)│ comes closer to │ Hd(e
jω)│.Much work has 

been done on adjusting {w[n]} to satisfy certain main lobe and side lobe 

req
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uirements .Some of the commonly used windows are given below-  

(a) Rectangular Window  

WR(n)={1,0 n N 1  

0, otherwise  

 

(b) Bartlett (Triangular)  

 

2n  

,0 n  (N 1) / 2 

N 1  

WB(n)={ 2 2n , (N 1) / 2 n N 1 N 

1  

0, elsewhere  

(c) Hanning Window  

 

 1  cos[2 n /(N 1)]  

WHan(n)={2 ,0 n N 1  0, otherwise  

(d) Blackman Window  

 W (n)={ .42 .5 cos 2 n N 1  .08 cos 4 n N 1 ,0 n N 1  

Bl 0, otherwise  

 

(e)Kaiser Window  

 

 N 1 2  N 1 2 12 

 WK(n)={I0 a 2 n 2  ,0 n N 1  

I 0 wa( N 1)  

  2   

0, otherwise  

 

Where I0(x) is the modified Zero Order Bessel Function of the first kind.  

The Transition width and the minimum stopped attenuation for different windows 
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are listed below-  

 

 
 

We first choose a window that satisfies the minimum attenuation and the 

bandwidth that allows us to choose the appropriate value of N. Actual frequency 

response characteristics are then calculated and we check the requirments are met 

or not  

Design of IIR Filters: 

There are two methods for design the IIR filter.  

1. Impulse Invariant Method  

2. Bilinear Transformation Method  

1. Filter design by impulse invariance: 

Here the impulse response h[n] of the desire discrete time system is proportional 

to  

equally spaces samples of the continuous time filter i.e,  

H[n]=Tdha(nTd)  

Where Td represents a sample interval.Since the specification of the filter are 

given in discrete time domain it turns out that Td has no role to play in design of 

the filter. From the sampling theorem the frequency response of the discrete time 

filter is given by  

H(ejω)= H ( j j 2 k)  

a  

 k  Td  Td 

Since any practical continuous time filter is not strictly band limited there is some 

aliasing. However if the continuous time filter approaches zero at high frequency 

the aliasing may be negligible. Then the frequency response of the discrete time 

filter is  

   

H(ejω)≈k - Ha ( jTd) ,│ω│≤πType equation here. 

We first convert digital filter specifications to continuous time filter 



 

 58 | P a g e 

specifications. Neglecting aliasing we get Ha(jΩ) specification by applying the 

relation Ω= ω/Td. Where Ha(jΩ) is transferred to the designed filter H(z).  

Let us assume that the poles of the continuous time filter are simple, 

then H (s)= N  Aka  

k 1 s s k  

 

The corresponding Impulse response is h (t)={ N A eskt
, t  0

 

 a  k 1  k  

0, t  0  

 

Then h[n]=Tdha(nTd)= N Td A e sknT du[n]  

k 

 k 1   

 N  Td Ak 

 The system function function for this is H(z)=  skTd 1 

 k 1 1 e z  

We see that a pole at s= sk in the s-plane is transferred to a pole at z= eskTdin the z-

plane. If the continuous time filter is stable i.e Re{sk}<0, then the magnitude of 

eskTdwill be less than 1.So the pole will be inside the unit circle. Thus the causal 

discrete filter is stable. The mapping of zero is not so straight forward.  

Bilinear Transformation: 

This technique avoids the problem of aliasing by mapping jΩ axis in the s-plane 

to one revolution of unit circle in the z-plane. If Ha(s) is the continuous time 

transfer function the discrete time transfer function is detained by replacing s with 

2 1 z 1  

 S=   1  

 Td  1 z  

From which we get  z= 1 Td  / 2 s  

 

1  (Td / 2)s  

 1 Td j Td  

Substituting s= +jΩ , we get z 1 T
2

d j T
2

d 
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 2  2  

If <0, it is then magnitude of the real part in the denominator is more than that of 

the numerator and so │z│<1. Similarly if >0 then │z│>1 for all Ω.Thus pole in 

the left half of the s-plane will get mapped to the poles inside the unit circle in z- 

plane. If =0 then  

  1 j Td  

  z  2 

  1 j 2Td so │z│=1,writing z= e j  we get  

1 j Tde 

j =1 j 
2
Td 

2  

Rearranging we get j 2Td eejj 11  eejj //  22  ((ee jj //  22  ee jj //  22  ))   j 

cossin //  22   

Or  2tan / 2 or  2 tan 1 Td .  

 Td 2  
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