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STRUCTURAL MECHANICS 

LEARNING OBJECTIVE 

CHAPTER- 

1. Properties of Materials Classification of materials, elastic materials, plastic materials, ductile 

materials, brittle materials.  Tensile test, compressive test, impact test, fatigue test, torsion test. 

2. Simple Stresses and Strains Concept of stress, normal and shear stresses due to torsion Concept of 

strain, strain and deformation, longitudinal and lateral strain, poison’s ratio, Volumetric strain 

Hooke’s law, modulli of elasticity and rigidity, Bulk modulus of elasticity, relationship between 

the elastic constants. Stresses and strains in bars subjected to tension and compression. Extension of 

uniform bar under its own weight, stress produces in compound bars (two or three) due to axial load. 

Stressstrain diagram for mild steel, mechanical properties, factor of safety 

Temperature stresses and strains 
3.  Bending Moment and Shear Force Concept of a beam and supports (Hinges, Roller and Fixed), 

types of beams: simply supported, cantilever, fixed and continuous beams 

Types of loads (point, uniformly distributed and varying loads)  Concept of 

bending moment and shear force, sign conventions Bending Moment and shear force diagrams for 

cantilever, simply supported and over hanging beams subjected to concentrated, uniformly distributed 

and uniformly varying loads (B.M. and S.F. diagrams should preferably be drawn on graph paper. 

Relationship between load, shear force and bending moment, point of maximum bending moment and 

contraflexure. 

4.  Second Moment of Area Concept of second moment of area, radius of gyration 

Theorems of parallel and perpendicular axes Second moment of area for sections 

of Rectangle, Triangle, Circle, Trapezium, Angle, Tee, 

I, Channel and Compound sections. (No derivation) 

5.  Bending and Shear Stresses Theory of simple bending Application of the equation M / I= sigma / Y= 
E/R (No derivation is required) Moment of resistance, sectional modulus and 
permissible bending stresses in circular, rectangular, I, T and L 

sections; Comparision of strengths of the above sections. 

6. Slope and Deflection Necessity for determination of reflection Moment area theorems (no derivation) 

Computation of slopes and deflections using moment area theorems for: (a) Simple supported 

beam with UDL over entire span and concentrated load at any point 

(c) Cantilever with UDL over entire span and concentrated load at free end 
7. Columns Theory of columns, Euler, Rankine’s and I.S. formulae. Combined Direct and Bending 

Stresses Concentric and eccentric loads, eccentricity Effect of eccentric load on 

the section, stresses due to eccentric loads, examples in the case of short columns. Effect of wind 
pressure on walls and chimneys; water pressure on dams and earth pressure on retaining 

walls their causes of failures and their stability. 

8. Analysis of Trusses Concept of a frame, redundant and deficient frame, End supports, ideal and 

practical trusses. Analysis of trusses by: (i) Methods of joints (ii) Method of sections and 

(iii) Graphical method 



 

CHAPTER-1 PROPERTIES OF MATERIAL 
 

  Elasticity: Ability of a body to resist a distorting influence or stress and to return to its original size and 

shape when the stress is removed.

  Plasticity: Ability of a material to undergo irreversible or permanent deformations without breaking or 

rupturing; opposite of brittleness.

  Malleability: Ability of the material to be flattened into thin sheets under applications of heavy 

compressive forces without cracking by hot or cold working means.

 Ductility: Ability of a material to deform under tensile load (% elongation).

  Flexibility: Ability of an object to bend or deform in response to an applied force; pliability; 
complementary to stiffness.

  Toughness: Ability of a material to absorb energy (or withstand shock) and plastically deform without 

fracturing (or rupturing); a material's resistance to fracture when stressed; combination of strength and 

plasticity

  Brittleness: Ability of a material to break or shatter without significant deformation when under stress; 

opposite of plasticity,examples:glass,concrete,cast iron,ceramics etc.

 

TEST OF MATERIALS 
 

1.TENSILE TEST- 
 

TENSILE TESTS are performed for several reasons. The results of tensile tests are used in selecting materials 

for engineering applications. Tensile properties frequently are included in material specifications to ensure 

quality. Tensile properties often are measured during development of new materials and processes, so that 

different materials and processes can be compared. Finally, tensile properties often are used to predict the 

behavior of a material under forms of loading other than uniaxial tension. The strength of a material often is the 

primary concern. The strength of interest may be measured in terms of either the stress necessary to cause 

appreciable plastic deformation or the maximum stress that the material can withstand. These measures of 

strength are used, with appropriate caution (in the form of safety factors), in engineering design. Also of interest 

is the material’s ductility, which is a measure of how much it can be deformed before it fractures. Rarely is 

ductility incorporated directly in design; rather, it is included in material specifications to ensure quality and 

toughness. Low ductility in a tensile test often is accompanied by low resistance to fracture under other forms 

of loading. Elastic properties also may be of interest, but special techniques must be used to measure these 

properties during tensile testing, and more accurate measurements can be made by ultrasonic techniques. 

 

Tensile Specimens and Testing Machines 
 

Tensile Specimens- Consider the typical tensile specimen . It has enlarged ends or shoulders for gripping. The 

important part of the specimen is the gage section. The cross-sectional area of the gage section is reduced 

relative to that of the remainder of the specimen so that deformation and failure will be localized in this region. 

The gage length is the region over which measurements are made and is centered within the reduced section. 

The distances between the ends of the gage section and the shoulders should be great enough so that the larger 

ends do not constrain deformation within the gage section, and the gage length should be great relative to its 

diameter. Otherwise, the stress state will be more complex than simple tension. Detailed descriptions of 

standard specimen shapes are given and in subsequent chapters on tensile testing of specific materials. There 

are various ways of gripping the specimen, some of which are illustrated .The end may be screwed into a 

threaded grip, or it may be pinned; butt ends may be used, or the grip section may be held between wedges. 

There are still other methods .The most important concern in the selection of a gripping method is to ensure that 
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the specimen can be held at the maximum load without slippage or failure in the grip section. Bending should 

 

 

 

 
be minimized. 

 

2- COMPRESSIVE TEST 

Compressive strength or compression strength is the capacity of a material or structure to withstand loads 

tending to reduce size, as opposed to tensile strength, which withstands loads tending to elongate. In other 

words, compressive strength resists compression (being   pushed   together),   whereas   tensile   strength 

resists tension (being pulled apart). In the study of strength of materials, tensile strength, compressive strength, 

and shear strength can be analyzed independently. 

Some materials fracture at their compressive strength limit; others deform irreversibly, so a given amount of 

deformation may be considered as the limit for compressive load. Compressive strength is a key value for 

design of structures. 

3- TORSION TEST 

A torsion test measures the strength of any material against maximum twisting forces. Itis an extremely 

common test used in material mechanics to measure how much of  a twist  acertain material can 

withstand before cracking or breaking. This applied pressure is referred to astorque. Materials typically used 

in the manufacturing industry, such as metal fasteners andbeams, are often subject to torsion testing to 

determine their strength under duress.There are three broad categories under which a torsion test can take 

place: failure testing, prooftesting and operational testing. Failure testing involves twisting the material until it 

breaks. Prooftesting observes whether a material can bear a certain amount of torque load over a given 

periodof time. Operational testing tests specific products to confirm their elastic limit before going onthe 

market.It is critical for the results of each torsion test to be recorded. Recording is done through creatinga 

stress-strain diagram with the angle of twist values on the X-axis and the torque values on theY-axis. Using 

a torsion testing apparatus, twisting is performed at quarter-degree increments withthe torque that it can 

withstand recorded. The strain corresponds to the twist angle, and the stresscorresponds to the torque 

measured. 

 
4- IMPACT TEST 

The Charpy impact test, also known as the Charpy V-notch test, is a standardized high strain-rate test which 

determines the amount of energy absorbed by a material during fracture. This absorbed energy is a measure of a 

given material's notch toughness and acts as a tool to study temperature-dependent ductile-brittle transition. It is 

widely applied in industry, since it is easy to prepare and conduct and results can be obtained quickly and 

cheaply. A disadvantage is that some results are only comparative. 

The Test was developed around 1900 by S.B. Russell (1898, American) and Georges Charpy (1901, 

French).The test became known as the Charpy test In the early 1900s due to the technical contributions and 

standardization efforts by Charpy. The test was pivotal in understanding the fracture problems of ships during 

World War II. 

Today it is utilized in many industries for testing materials, for example the construction of pressure vessels and 

bridges to determine how storms will affect the materials used. 

he apparatus consists of a pendulum of known mass and length that is dropped from a known height to impact 

a notched specimen of material. The energy transferred to the material can be inferred by comparing the 

difference in the height of the hammer before and after the fracture (energy absorbed by the fracture event). 
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The notch in the sample affects the results of the impact test, thus it is necessary for the notch to be of regular 

dimensions and geometry. The size of the sample can also affect results, since the dimensions determine 

whether or not the material is in plane strain. This difference can greatly affect the conclusions made. 
 

 

CHAPTER-2 SIMPLE STRESS AND STRAIN 

BEHAVIOUR OF MATERIALS 

1. Introduction 

When a force is applied on a body it suffers a change in shape, that is, it deforms. A force to resist the 

deformation is also set up simultaneously within the body and it increases as the deformation continues. The 

process of deformation stops when the internal resisting force equals the externally applied force. If the body is 

unable to put up full resistance to external action, the process of deformation continues until failure takes place. 

The deformation of a body under external action and accompanying resistance to deform are referred to by the 

terms strain and stress respectively. 

2. Stresses 

Stress is defined as the internal resistance set up by a body when it is deformed. It is measured in N/m
2
 

and this unit is specifically called Pascal (Pa). A bigger unit of stress is the mega Pascal (MPa). 

1 Pa = 1N/m
2
, 

1MPa = 10
6
 N/m

2
 =1N/mm

2
. 

 Three Basic Types of Stresses 

Basically three different types of stresses can be identified. These are related to the nature of the 

deforming force applied on the body. That is, whether they are tensile, compressive or shearing. 

 Tensile Stress 
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Consider a uniform bar of cross sectional area A subjected to an axial tensile force P. The stress at any 

section x-x normal to the line of action of the tensile force P is specifically called tensile stress pt . Since 

internal resistance R at x-x is equal to the applied force P, we have, 
pt = (internal resistance at x-x)/(resisting area at x-x) 

=R/A 

=P/A. 

Under tensile stress the bar suffers stretching or elongation. 

 Compressive Stress 

If the bar is subjected to axial compression instead of axial tension, the stress developed at x-x is 

specifically called compressive stress pc. 
pc =R/A 

= P/A. 
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Under compressive stress the bar suffers shortening. 

 Shear Stress 

Consider the section x-x of the rivet forming joint between two plates subjected to a tensile force P as 

shown in figure. 
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The stresses set up at the section x-x acts along the surface of the section, that is, along a direction 

tangential to the section. It is specifically called shear or tangential stress at the section and is denoted by q. 

q =R/A 

=P/A. 

 Normal or Direct Stresses 

When the stress acts at a section or normal to the plane of the section, it is called a normal stress or a 

direct stress. It is a term used to mean both the tensile stress and the compressive stress. 

 Simple and Pure Stresses 

The three basic types of stresses are tensile, compressive and shear stresses. The stress developed in a 

body is said to be simple tension, simple compression and simple shear when the stress induced in the body is 

(a) single and (b) uniform. If the condition (a) alone is satisfied, the stress is called pure tension or pure 

compression or pure shear, as the case may be. 

 Volumetric Stress 

Three mutually perpendicular like direct stresses of same intensity produced in a body constitute a 

volumetric stress. For example consider a body in the shape of a cube subjected equal normal pushes on all its 

six faces. It is now subjected to equal compressive stresses p in all the three mutually perpendicular directions. 

The body is now said to be subjected to a volumetric compressive stress p. 
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Volumetric stress produces a change in volume of the body without producing any distortion to the 

shape of the body. 

3. Strains 

Strain is defined a the ratio of change in dimension to original dimension of a body when it is deformed. 
It is a dimensionless quantity as it is a ratio between two quantities of same dimension. 

 Linear Strain 

Linear strain of a deformed body is defined as the ratio of the change in length of the body due to the 

deformation to its original length in the direction of the force. If l is the original length and δl the change in 

length occurred due to the deformation, the linear strain e induced is given by 

e=δl/l. 
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Linear strain may be a tensile strain , et or a compressive strain ec according as δl refers to an increase in 

length or a decrease in length of the body. If we consider one of these as +ve then the other should be 

considered as –ve, as these are opposite in nature. 

 Lateral Strain 

Lateral strain of a deformed body is defined as the ratio of the change in length (breadth of a rectangular 

bar or diameter of a circular bar) of the body due to the deformation to its original length (breadth of a 

rectangular bar or diameter of a circular bar) in the direction perpendicular to the force. 

 Volumetric Strain 

Volumetric strain of a deformed body is defined as the ratio of the change in volume of the body to the 

deformation to its original volume. If V is the original volume and δV the change in volume occurred due to the 

deformation, the volumetric strain ev induced is given by ev =δV/V 
Consider a uniform rectangular bar of length l, breadth b and depth d as shown in figure. Its volume V is 

given by, 
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V   = lbd 

δV = δl bd + δb ld + δd lb 
δV /V = (δl / l) + (δb / b) + (δd / d) 

ev = ex +ey +ez 

This means that volumetric strain of a deformed body is the sum of the linear strains in three mutually 

perpendicular directions. 

 Shear Strain 
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Shear strain is defined as the strain accompanying a shearing action. It is the angle in radian measure 

through which the body gets distorted when subjected to an external shearing action. It is denoted by Ф. 

D Q D’ C C’ 








A Q B 

Consider a cube ABCD subjected to equal and opposite forces Q across the top and bottom forces AB 

and CD. If the bottom face is taken fixed, the cube gets distorted through angle  to the shape ABC’D’. Now 

strain or deformation per unit length is 

Shear strain of cube = CC’ / CD = CC’ / BC =  radian 

4. Relationship between Stress and Strain 

Relationship between Stress and Strain are derived on the basis of the elastic behaviour of material 

bodies. 

A standard mild steel specimen is subjected to a gradually increasing pull by Universal Testing 

Machine. The stress-strain curve obtained is as shown below. 

 

A -Elastic Limit 

B - Upper Yield Stress 

C - Lower Yield Stress 

D -Ultimate Stress 

E -Breaking Stress 

 

 Elasticity and Elastic Limit 

Elasticity of a body is the property of the body by virtue of which the body regains its original size and 

shape when the deformation force is removed. Most materials are elastic in nature to a lesser or greater extend, 

even though perfectly elastic materials are very rare. 

The maximum stress upto which a material can exhibit the property of elasticity is called the elastic 

limit. If the deformation forces applied causes the stress in the material to exceed the elastic limit, there will be 

a permanent set in it. That is the body will not regain its original shape and size even after the removal of the 

deforming force completely. There will be some residual strain left in it. 

Yield stress 



When a specimen is loaded beyond the elastic limit the stress increases and reach a point at which the 

material starts yielding this stress is called yield stress. 

Ultimate stress 

Ultimate load is defined as maximum load which can be placed prior to the breaking of the specimen. 
Stress corresponding to the ultimate load is known as ultimate stress. 

Working stress 

Working stress= Yield stress/Factor of safety. 

 Hooke’s Law 

Hooke’s law states that stress is proportional to strain upto elastic limit. If I is the stress induced in a 

material and e the corresponding strain, then according to Hooke’s law, 

p / e = E, a constant. 
This constant E is called the modulus of elasticity or Young’s Modulus, (named after the English 

scientist Thomas Young). 

It has later been established that Hooke’s law is valid only upto a stress called the limit of 
proportionality which is slightly less than the elastic limit. 

 

 Elastic Constants 

Elastic constants are used to express the relationship between stresses and strains. Hooke’s law , is 

stress/strain = a constant, within a certain limit. This means that any stress/corresponding strain = a constant, 

within certain limit. It follows that there can be three different types of such constants. (which we may call the 

elastic constants or elastic modulae) corresponding to three distinct types of stresses and strains. These are 

given below. 

(i) Modulus of Elasticity or Young’s Modulus (E) 

Modulus of Elasticity is the ratio of direct stress to corresponding linear strain within elastic limit. If p is 

any direct stress below the elastic limit and e the corresponding linear strain, then E = p / e. 

(ii) Modulus of Rigidity or Shear Modulus (G) 

Modulus of Rigidity is the ratio of shear stress to shear strain within elastic limit. It is denoted by N,C or G. if q 

is the shear stress within elastic limit and  the corresponding shear strain, then G = q / . 

(iii) Bulk Modulus (K) 

Bulk Modulus is the ratio of volumetric stress to volumetric strain within the elastic limit. If pv is the 

volumetric stress within elastic limit and ev the corresponding volumetric strain, we have K = pv / ev. 
5. Poisson’s Ratio 

Any direct stress is accompanied by a strain in its own direction and called linear strain and an opposite 

kind strain in every direction at right angles to it, lateral strain. This lateral strain bears a constant ratio with the 

linear strain. This ratio is called the Poisson’s ratio and is denoted by (1/m) or µ. 

Poisson’s Ratio = Lateral Strain / Linear Strain. 
Value of the Poisson’s ratio for most materials lies between 0.25 and 0.33. 

6. Complementary Strain 

Consider a rectangular element ABCD of a body subjected to simple shear of intensity q as shown. Let t 

be the thickness of the element. 

Total force on face AB is , FAB = stress X area = q X AB X t. 

Total force on face CD is, FCD = q X CD Xt = q XAB Xt. 
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FAB and FCD being equal and opposite, constitute a couple whose moment is given by, 

M =FAB X BC = q XAB X BC X t 
Since the element is in equilibrium within the body, there must be a balancing couple which can be 

formed only by another shear stress of some intensity q’ on the faces BC and DA. This shear stress is called the 

complementary stress. 
FBC = q’ X BC X t 
FDA = q’ X DA X t = q’ X BC Xt 

The couple formed by these two forces is M’ = FBC X AB = q’ X BC X t 

For equilibrium, M’ = M. 

Therefore q’ = q 
This enables us to make the following statement. 

In a state of simple shear a shear stress of any intensity along a plane is always accompanied by a 

complementary shear stress of same intensity along a plane at right angles to the plane. 

7. Direct Stresses Developed Due to Simple Shear. 

Consider a square element of side a and thickness t in a state of simple shear as shown in figure. It is 

clear that the shear stress on the forces of element causes it to elongate in the direction of the diagonal BD. 

Therefore a tensile stress of same intensity pt is induced in the elements along BD. ie, across the plane of the 

diagonal AC. The triangular portion ABC of the element is in equilibrium under the action of the following. 
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(1)FAC = Normal force on face AC = pt X AC X t = pt X √2 aXt 

(2)FAB = Tangential force on face AB = q X BC X t = q aXt 

(3)FBC = Tangential force on face BC = q X BC X t = q aXt 

For equilibrium in the direction normal to AC, 
FAC – FAB cos45 – FBC cos45 = 0 
Pt X √2 at – q at X 1/√2 - q at X 1/√2 = 0 

√2 pt – 2 q /√2 = 0 

pt = q 

C 
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It can also be seen that the shear stress on the faces of the element causes it to foreshorten in the 

direction of the diagonal BD. Therefore a compressive stress pc is induced in the element in the direction AC, 

ie across the plane of the diagonal BD. It can also be shown that pc = q. 

It can thus be concluded that simple shear of any intensity gives rise to direct stresses of same intensity 

along the two planes inclined at 45º to the shearing plane. The stress along one of these planes being tensile 

and that along the other being compressive. 

 

8. Relationship among the elastic constants 

 Relationship between modulus of elasticity and modulus of rigidity 

Consider a square element ABCD of side ‘a’ subjected to simple shear of intensity q as shown in figure. 
It is deformed to the shape AB’C’D under the shear stress. Drop perpendicular BE to the diagonal DB’. 

Let Ф be the shear strain induced and let N be the modulus of rigidity. 
The diagonal DB gets elongated to DB’. Hence there is tensile strain et in the diagonal. 

et = (DB’ – DB) / DB = EB’ / DB 

since this deformation is very small we can take L BB’E = 45º 

EB’ = BB’ / √2 = AB tan Ф / √2 = a tan Ф / √2 

DB = √2 a 
et = (a tan Ф / √2)/ √2 a = tan Ф /2 = = Ф / 2 since Ф is small 

ie et = ½ X q/N --------------------------- (1) 

We know that stress along the diagonal DB is a pure tensile stress pt = q and that along the diagonal AC 
is a pure compressive stress pc also equal to q. hence the strain along the diagonal DB is et = q/E + 1/m X q/E 

Ie et = q/E (1+1/m) ---------------------- (2) 
From (1) and (2) we have, 

E = 2N(1+1/m) 

This is the required relationship between E and N. 

 Relationship between Modulus of Elasticity E and Bulk Modulus K 
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Consider a cube element subjected to volumetric tensile stress pυ in X,Y and Z directions. Stress in each 

direction is equal to pυ. ie px = py = pz =pυ 

Consider strains induced in X-direction by these stresses. px induces tensile strain , while py and pz 

induces compressive strains. Therefore, 

ex = px/E – 1/m[py/E + pz/E] = pυ/E[1-2/m] 
due to the perfect symmetry in geometry and stresses 

ey = pυ/E[1-2/m] 

ez = pυ/E[1-2/m] 

K = p υ / e υ =p υ/(ex+ey+ez) = pυ/[3pυ/E(1-2/m)] 

ie E = 3K(1-2/m ) is the required relationship. 

 

 Relationship among the constants 

From above, 

E = 2N[1+(1/m)] and E = 3K[1-(2/m )] 



E = 3K[1-2(E/2N -1)] = 3K[1-E/N +2] 

9K = E[1+(3K/N)] = E[(N+3K)/N] 

E = 9NK/(N+3K) 

 

9. Bars of uniform section 

Consider a bar of length l and Cross sectional area A. Let P be the axial pull on the bar,p the stresss 

induced ,e the strain in the bar and δl is the elongation. 

Then p= P/A 

e= p/E =P/(AE) --------------------- (1) 

e= δl/l ----------------------- (2) 

equating (1) and (2) 

δl = Pl / (AE) 

 

 

CHAPTER-3 BENDING MOMENT AND SHEAR FORCE 
 

TYPES OF LOADS 

A beam is usually horizontal member and load which will be acting over the beam will be usually vertical 

loads. There are following types of loads as mentioned here and we will discuss each type of load in detail. 

 Point load or concentrated load 

 Uniformly distributed load 

 Uniformly varying load 

 Point load or concentrated load 

Point load or concentrated load, as name suggest, acts at a point on the beam. If we will see practically, 

point load or concentrated load also distributed over a small area but we can consider such type of 

loading as point loading and hence such type of load could be considered as point load or concentrated 

load. 

 

Following figure displayed here indicates the beam AB of length L which will be loaded with point load 

W at the midpoint of the beam. Load W will be considered here as the point load. 

 Uniformly distributed load 

Uniformly distributed load is the load which will be distributed over the length of the beam in such a 

way that rate of loading will be uniform throughout the distribution length of the beam. 

 

Uniformly distributed load is also expressed as U.D.L and with value as w N/m. During determination 

of the total load, total uniformly distributed load will be converted in to point load by multiplying the 

rate of loading i.e. w (N/m) with the span of load distribution i.e. L and will be acting over the midpoint 

of the length of the uniformly load distribution. 

 

Let us consider the following figure, a beam AB of length L is loaded with uniformly distributed load 

and rate of loading is w (N/m). 



 

 

 

 

 

Total uniformly distributed load, P = w*L 

 Uniformly varying load 

Uniformly varying load is the load which will be distributed over the length of the beam in such a way 

that rate of loading will not be uniform but also vary from point to point throughout the distribution 

length of the beam. 

 

Uniformly varying load is also termed as triangular load. Let us see the following figure, a beam AB of 

length L is loaded with uniformly varying load. 

 

We can see from figure that load is zero at one end and increases uniformly to the other end. During 

determination of the total load, we will determine the area of the triangle and the result i.e. area of the 

triangle will be total load and this total load will be assumed to act at the C.G of the triangle. 

 

 

 

 

 

Total load, P = w*L/2 

TYPES OF BEAMS 

The four different types of beams are: 

1. Simply Supported Beam 

2. Fixed Beam 

3. Cantilever Beam 

4. Continuously Supported Beam 

1. Simply Supported Beam 

If the ends of a beam are made to rest freely on supports beam, it is called a simple (freely) supported beam. 
 

https://me-mechanicalengineering.com/different-types-of-beams/#simply_supported_beam
https://me-mechanicalengineering.com/different-types-of-beams/#fixed_beam
https://me-mechanicalengineering.com/different-types-of-beams/#cantilever_beam


2. Fixed Beam 

If a beam is fixed at both ends it is free called fixed beam. Its another name is a built-in beam. 
 

3. Cantilever Beam 

If a beam is fixed at one end while the other end is free, it is called cantilever beam. 
 

 
4. Continuously Supported Beam 

If more than two supports are provided to the beam, it is called continuously supported beam. 
 

 
TYPES OF SUPPORT 

Different types of external supports are as follows: 

 

o Fixed support 
 

o Pinned support or hinged support 
 

o Roller support 
 

o Link support 
 

o Simple support 



Below a force of 10N is exerted at point A on a beam. This is an external force. However because the beam is a 

rigid structure,the force will be internally transferred all along the beam. This internal force is known as shear 

force. The shear force between point A and B is usually plotted on a shear force diagram. As the shear force is 

10N all along the beam, the plot is just a straight line, in this example. 
 

 
The idea of shear force might seem odd, maybe this example will help clarify. Imagine pushing an object along 

a kitchen table, with a 10N force. Even though you're applying the force only at one point on the object, it's not 

just that point of the object that moves forward. The whole object moves forward, which tells you that the force 

must have transferred all along the object, such that every atom of the object is experiencing this 10N force. 

Please note that this is not the full explanation of what shear force actually is. 
 

 Basic shear diagram  

What if there is more than one force, as shown in the diagram below, what would the shear force diagram look 

like then? 
 

 
 

The way you go about this is by figuring out the shear force at points A,B,C,E (as there is an external force 

acting at these points). The way you work out the shear force at any point, is by covering (either with your hand 

or a piece of paper), everything to right of that point, and simply adding up the external forces. Then plot the 

point on the shear force diagram. For illustration purposes, this is done for point D: 



 

 
 

Shear force at D = 10N - 20N + 40N = 30Newtons 
 

 

 

Now, let's do this for point B. BUT - slight complication - there's a force acting at point B, are you going to 

include it? The answer is both yes and no. You need to take 2 measurements. Firstly put your piece of paper, so 

it's JUST before point B: 
 

 

Shear force at B = 10N 

 

Now place your paper JUST after point B: 



 

 
 

Shear force at B = 10N - 20N = -10N 
 
 

(B' is vertically below B) 

Now, do point A, D and E, and finally join the points. your diagram should look like the one below. If you don't 

understand why, leave a message on the discussion section of this page (its at the top), I will elaborate on the 

explanation: 
 

Notice how nothing exciting happens at point D, which is why you wouldn't normally analyse the shear force at 

that point. For clarity, when doing these diagrams it is recommended you move you paper from left to right, and 

hence analyse points A,B, C, and E, in that order. You can also do this procedure covering the left side instead 

of the right, your diagram will be "upside down" though. Both diagrams are correct. 
 

 Basic bending moment diagram  

Bending moment refers to the internal moment that causes something to bend. When you bend a ruler, even 

though apply the forces/moments at the ends of the ruler, bending occurs all along the ruler, which indicates 



that there is a bending moment acting all along the ruler. Hence bending moment is shown on a bending 

moment diagram. The same case from before will be used here: 
 

 
To work out the bending moment at any point, cover (with a piece of paper) everything to the right of that 

point, and take moments about that point. (I will take clockwise moments to be positive). To illustrate, I shall 

work out the bending moment at point C: 
 

 
Bending moment at C = 10Nx3m - 20Nx2m = -10Nm 

(Please note that the two diagrams below should show units in "Nm", not in "N" as it is currently showing) 
 
 

 

Notice that there's no need to work out the bending moment "just before and just after" point C, (as in the case 

for the shear force diagram). This is because the 40N force at point C exerts no moment about point C, either 

way. 

Repeating the procedure for points A,B and E, and joining all the points: 



 

 
 

Normally you would expect the diagram to start and end at zero, in this case it doesn't. This is my fault, and it 

happened because I accidentally chose my forces such that there is a moment disequilibrium. i.e. take moments 

about any point (without covering the right of the point), and you'll notice that the moments aren't balanced, as 

they should be. It also means that if you're covering the left side as opposed to the right, you will get a 

completely different diagram. Sorry about this... Upon inspection, the forces are unbalanced, so it is 

immediately expected that the diagram will most likely not be balanced. 
 

 Point moments  

Point moments are something that you may not have come across before. Below, a point moment of 20Nm is 

exerted at point C. Work out the reaction of A and D: 

 

 

Force equilibrium: R1 + R2 = 40 

Taking moments about A (clockwise is positive): 40·2 - 20 - 6·R2 = 0 

R1 = 30N , R2 = 10N 

If instead you were to take moments about D you would get: - 20 - 40·4 + 6·R1 = 0 

I think it's important for you to see that wherever you take moments about, the point moment is always taken as 
a negative (because it's a counter clockwise moment). 

So how does a point moment affect the shear force and bending moment diagrams? 

Well. It has absolutely no effect on the shear force diagram. You can just ignore point C when drawing the 

shear force diagram. When drawing the bending moment diagram you will need to work out the bending 

moment just before and just after point C: 



 

 
 

Just before: bending moment at C = 3·30 - 1·40 = 50Nm 

Just after: bending moment at C = 3·30 - 1·40 - 20 = 30Nm 

Then work out the bending moment at points A, B and D (no need to do before and after for these points). And 
plot. 

Cantilever beam 

Until now, you may have only dealt with "simply supported beams" (like in the diagram above), where a beam 

is supported by 2 pivots at either end. Below is a cantilever beam, which means - a beam that rigidly attached to 

a wall. Just like a pivot, the wall is capable of exerting an upwards reaction force R1 on the beam. However it is 

also capable of exerting a point moment M1 on the beam. 
 

Force equilibrium: R1 = 10N 

Taking moments about A: -M1 + 10·2 = 0 → M1 = 20Nm 
 

 Uniformly Distributed Load (UDL)  

Below is a brick lying on a beam. The weight of the brick is uniformly distributed on the beam (shown in 

diagram A). The brick has a weight of 5N per meter of brick (5N/m). Since the brick is 6 meters long the total 

weight of the brick is 30N. This is shown in diagram B. Diagram B is a simplification of diagram A. As you 

will see, you will need to be able to convert a type A diagram to a type B. 



 

 
 

To make your life more difficult I have added an external force at point C, and a point moment to the diagram 

below. This is the most difficult type of question I can think of, and I will do the shear force and bending 

moment diagram for it, step by step. 
 

 

Firstly identify the key points at which you will work out the shear force and bending moment at. These will be 
points: A,B,C,D,E and F. 

As you would have noticed when working out the bending moment and shear force at any given point, 

sometimes you just work it out at the point, and sometimes you work it out just before and after. Here is a 

summary: When drawing a shear force diagram, if you are dealing with a point force (points A,C and F in the 

above diagram), work out the shear force before and after the point. Otherwise (for points B and D), just work it 

out right at that point. When drawing a bending moment diagram, if you are dealing with a point moment (point 

E), work out the bending moment before and after the point. Otherwise (for points A,B,C,D, and F), work out 

the bending moment at the point. 

After identifying the key points, you want to work out the values of R1 and R2. You now need to convert to a 

type B diagram, as shown below. Notice the 30N force acts right in the middle between points B and D. 

 

Force equilibrium: R1 + R2 = 50 

Take moments about A: 4·30 + 5·20 + 40 - 10·R2 = 0 

R1 = 24N , R2= 26N 



Update original diagram: 
 

Shear force diagram 

point A: 

 

 

 
point B: 

 

 

Notice that the uniformly distributed load has no effect on point B. 

 
point C: 

Just before C: 
 

 

Now convert to a type B diagram. Total weight of brick from point B to C = 5x4 = 20N 



 

 
 

Shear force before C: 24 - 20 = 4N 
 

Shear force after C: 24 - 20 - 20 = -16N 

 
point D: 

 

Shear force at D: 24 - 30 - 20 = -26N 

 
point F: 

(I have already converted to a type B diagram, below) 



 

 
 

 

Finally plot all the points on the shear force diagram and join them up: 
 

Bending moment diagram 

Point A 

 

Bending moment at A: 0Nm 



 

Point B 
 

Bending moment at B: 24·1 = 24Nm 

 
point C: 

(I have already converted to a type B diagram, below) 
 

Bending moment at C: 24·5 - 20·2 = 80Nm 

 
point D: 

(I have already converted to a type B diagram, below) 
 

 
Bending moment at D: 24·7 - 30·3 - 20·2 = 38Nm 

 
point E: 

(I have already converted to a type B diagram, below) 



 

 
 

 

point F: 

(I have already converted to a type B diagram, below) 
 

Bending moment at F: 24·10 - 30·6 - 20·5 + 40 = 0Nm 

Finally, plot the points on the bending moment diagram. Join all the points up, EXCEPT those that are under 

the uniformly distributed load (UDL), which are points B,C and D. As seen below, you need to draw a curve 

between these points. Unless requested, I will not explain why this happens. 



 

 
 

Note: The diagram is not at all drawn to scale. 

I have drawn 2 curves. One from B to C, one from C to D. Notice that each of these curves resembles some part 

of a negative parabola. 
 

 

 

Rule: When drawing a bending moment diagram, under a UDL, you must connect the points with a curve. This 

curve must resemble some part of a negative parabola. 

Note: The convention used throughout this page is "clockwise moments are taken as positive". If the 

convention was "counter-clockwise moments are taken as positive", you would need to draw a positive 

parabola. 

Hypothetical scenario 

For a hypothetical question, what if points B, C and D, were plotted as shown below. Notice how I have drawn 

the curves for this case. 



 

 
 

If you wanted to find the peak of the curve, how would you do it? Simple. On the original diagram (used at the 

start of the question) add an additional point (point G), centrally between point B and C. Then work out the 

bending moment at point G. 

 
That's it! If you have found this article useful, please comment in the discussion section (at the top of the page), 

as this will help me decide whether to write more articles like this. Also please comment if there are other 

topics you want covered, or you would like something in this article to be written more clearly. 

 
IMPORTANT QUESTIONS 

OBJECTIVE 
 

 

1. 1. The bending moment for a certain portion of the beam is constant. For that section, shear force would be 

Zero 

Increasing 

Decreasing 

Constant 
2. Hoop stress induced in a thin cylinder by winding it with wire under tension will be 

Compressive 

Tensile 

Shear 

Zero 

3. What is the limiting value of Poisson's ratio? 

0 and 0.5 

1 and -0.5 

-1 and -0.5 

-1 and 0.5 

4. Slenderness ratio has a dimension of 



m 

m^-1 

m^2 

Dimensionless quantity 

5. Young's modulus of elasticity for a perfectly rigid body is 

Zero 

Unity 

Infinity 

None of these 

6. Which material has the highest value of Poisson's ratio? 

Rubber 

Wood 

Copper 

Steel 
7. Radial stress in a thin spherical pressure vessel is 

Equal to hoop stress 

Double the hoop stress 

Half the hoop stress 

Zero 

8. The area under stress strain curve represents 

Breaking strength of material 

Toughness of material 

Hardness of material 

Energy required to cause failure 
9. For a thin spherical shell subjected to internal pressure , the ratio of volumetric strain to diametrical 

circumferential strain is 

1.25 

1.5 

2.0 

3.0 

 

 

 

 

 

10. Which of the following beam is likely to have the point of contraflexture? 

Cantilever beam 



Simply supported beam 

Beam with overhangs 

Beam fixed at both ends 

11. The forces are used are used in the method of sections for the calculation of the internal 

forces. 

a) Internal rotational 

b) Couple rotational 

c) Translational 

d) External 

12. Every point on the force vector which is the internal force is having the same magnitude and the same 

direction as the whole force vector have. 

a) True 

b) False 
 

 

13. For getting the normal force on the supports, we do what? 

a) Make the vertical sum of the forces equal to zero 

b) Make the horizontal sum of the forces equal to zero 

c) Make the moment sum of the forces equal to zero 

d) Make the rotational sum of the forces equal to zero 
 

 

14. For getting the horizontal component of the support reactions what do we do? 

a) Make the vertical sum of the forces equal to zero 

b) Make the horizontal sum of the forces equal to zero 

c) Make the moment sum of the forces equal to zero 

d) Make the rotational sum of the forces equal to zero 
 

 

15. Twisting moment is also called as    

a) Moment of line 

b) Moment of section 

c) Moment of plane 

d) Torsional moment 
 

 

16. The loading generally act upon the of the body. 

a) Centroid 

b) Symmetrical centre 

c) Rotational centre 

d) Chiral centre 



17. The area of does make the difference in the internal forces, that is if the area is large the internal force 

acting is also large and vice versa. 

a) True 

b) False 
 

 

18. The magnitude of each loading will be at various points along the axis of the member of the 

beam. 

a) Same 

b) Different 

c) Slightly different 

d) Slightly same 
 

 

19. Torsional moment is applied at the part of the beam. 

a) The centroid 

b) The left end 

c) The right end 

d) The axis beyond the body of the beam 
 

 

20. Normal force is equal to    

a) The net horizontal force 

b) The net vertical force with a negative sign 

c) The net horizontal force with a negative sign 

d) The net vertical force 
 

 

21. If the normal force creates a tension then the force is said to be    

a) Positive 

b) Negative 

c) Rotational 

d) Collinear 
 

 

22. If the shear force creates a clockwise rotation then the force is said to be    

a) Positive 

b) Negative 

c) Rotational 

d) Collinear 



 SHORT QUESTIONS 

1. Define Elastic Materials ? 

2. Define Plastic Materials ? 

3. Define Brittle Materials ? 

4. Define ductile Materials ? 

5. Give Any Two Example Of Ductile Materials ? 

6. Give Any Two Example Of Brittle Materials ? 

7. Describe tensile test? 

8. Rigid body? 

9. Describe compresion test? 
10.Bulk modulus? 

11. FOS 
12. define load? 

13.Define tensile load ? 

14. Define compressive load ? 

15. Define shear stress load ? 

16. define stress? 

17. define strain? 

18. Define hooke’s law? 

19. define volumetric strain ? 

20. unit of stress, strain. Modulus of rigidity? 

21. define bending moment? 
22.Define shear force? 

23. define types of load? 

24. define types of beam? 

25. define types of supports ? 

26. define types of reactions ? 
27. define point of contraflexure? 

28.define elastisity ? 

29. relation between modulus canstant? 

30. define bulk modulus ? 

LONG QUESTIONS 

1. Describe compresion test? 

2. Describe tensile test? 

3. discribe stress-strain digram/graph ? 

4. define hooke’s law? 

5. derivate the formula of elongation of bars? 

6. Describe E,C,K. Relationship also? 

7.Define mechanical properties of materials ? 

8. defferentiate between load and stress? 

9.describe sfd &bmd and point of contraflexure.? 
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Shear Force and Bending Moment 

 

TYPES OF FORCES: Basically, structural members experience two types of forces. 

 
External Forces: Actions of other bodies on the structure under consideration are known as 

external forces. 

Internal Forces: Forces and couples exerted on a member or portion of the structure by the rest 

of the structure. Internal forces always occur in equal but opposite pairs. 

TYPES OF LOAD 
 

The following are the important types of load which act on a beam. 

 
1. Concentrated or point load, 

2. Uniformly distributed load, and 

3. Uniformly varying load 

1. Concentrated or Point Load: Load acting at a point or over very limited area compared to 

the length of the beam is known as concentrated load or point load. 

 
 

 
2. Uniformly Distributed Load: Load that is spread over a beam with uniform rate of loading, 

(‘w’ per unit run) is known as uniformly distributed load or UDL. Uniformly distributed load 

is also known as rectangular load. 
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3. Uniformly Varying Load: Load that is spread over a beam with the rate of loading 

uniformly from one point to the other along the beam is known as uniformly varying load. 

Uniformly varying distributed load is also known as triangular load. 

 
 

 
4. Parabolic Load: If the variation of load distribution follows the equation of parabola, it is 

known as parabolic distributed load or simply parabolic load. 

 

 

TYPES OF SUPPORTS 

 
1. Simple support 

2. Roller Support 
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3. Pin (or) Hinge Support 

4. Fixed support 

 
Simple Supports 

 
Simple support is just a support on which structural member rests. It is idealized to  be a 

frictionless surface support. It only resists vertical movement of support. A simple support is free 

to rotate and translate along the surface upon which it rests. The resulting reaction force is 

always a single force perpendicular to the plane of support. 

The horizontal or lateral movement allowed is up to a limited extent and after that the structure 

loses its support. For example, if a plank is laid across gap to provide a bridge, it is assumed that 

the plank will remain in its place. It will do so until a foot kicks it or moves it. At that moment 

the plank will move because the simple connection cannot develop any resistance to the lateral 

load. 

This type of support is not commonly used in structural purposes. However, Simple supports are 

often found in zones of frequent seismic activity. 

Roller Supports 

 
Roller supports are free to rotate and translate along the surface upon which they rest. The 

surface can be horizontal, vertical, or sloped at any angle. They cannot resist parallel or 

horizontal forces and moment. They only resist perpendicular forces. Hence, the resulting 

reaction force is always a single force that is perpendicular to the plane of support. 

This type of support is provided at one end of bridge spans. The reason for providing roller 

support at one end is to allow contraction or expansion of bridge deck with respect to 

temperature differences in atmosphere. If roller support is not provided then it will cause severe 

damage to the banks of bridge. But this horizontal force should be resisted by at least one support 

to provide stability so, roller support should be provided at one end only not at both ends. 

Pinned Supports 
 

A pinned support is same as hinged support. It can resist both vertical and horizontal forces but 

not a moment. It allows the structural member to rotate, but not to translate in any direction. 
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Many connections are assumed to be pinned connections even though they might resist a small 

amount of moment in reality. It is also true that a pinned connection could allow rotation in only 

one direction; providing resistance to rotation in any other direction. In human body knee is the 

best example of hinged support as it allows rotation in only one direction and resists lateral 

movements. Ideal pinned and fixed supports are rarely found in practice, but beams supported on 

walls or simply connected to other steel beams are regarded as pinned. The distribution of 

moments and shear forces is influenced by the support condition. 

Best example for hinged support is door leaf which only rotates about its vertical axis without 

any horizontal or vertical movement. 

Fixed Supports 
 

Fixed support can resist vertical and horizontal forces as well as moment since they restrain both 

rotation and translation. They are also known as rigid support for the stability of a structure there 

should be one fixed support. A flagpole at concrete base is common example of fixed support In 

RCC structures the steel reinforcement of a beam is embedded in a column to produce a fixed 

support as shown in above image. Similarly all the riveted and welded joints in steel structure are 

the examples of fixed supports Riveted connection are not very much common now a days due to 

the introduction of bolted joints. 

Table 1. Idealized Structural Supports 

 

Types of 

supports 

Real life Example Symbol Movement allowed 

and prevented 

Unknown reactions 

Frictionless 

or Simple 

support 

 

 

 

 

Prevented: vertical 

translation 

Allowed: horizontal 

translation and 

rotation 

 

 

Roller 

support 

 

 

 

 

Prevented: vertical 

translation 

 

 

 Allowed: horizontal 

translation and 

rotation 
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Pinned or 

hinged 

support 

 

 

 

 

Prevented: horizontal 

translation and vertical 

translation 

Allowed: Rotation 

 

 

Fixed or 

Built-in 

support 

 

 

 

 

Prevented: horizontal 

translation, vertical 

translation and 

rotation 

 

 

 

 

BEAM: 

 
A Beam is defined as a structural member subjected to transverse shear loads (load normal to the 

axis of the beam) during its functionality. Due to the transverse shear loads, a beam is subjected 

to variable shear force and bending moment. Beam is a flexural member, designed primarily for 

bending. Analysis of beam pertains to the calculations of shear forces and bending moments 

along the length of the beam and drawing of shear force diagram and bending moment diagram. 

TYPES OF BEAMS: Depending upon the degrees of freedom and support conditions beams are 

of various types. 

 

Beams 

 
Statically determinate beam 

 

Number of reactions in the beam is 

equal to number of useful static 

equations of equilibrium 

Statically indeterminate beam 
 

Number of reactions in the beam is 

more than number of useful static 

equations of equilibrium 

 

  

Cantilever 

beam 

Simply 

supported 

beam 

Overhanging 

beam 

Fixed beam Propped 

Cantilever 

beam 

Continuous 

beam 



Shear Force and Bending Moment 

Dr. S. K. Nayak 6 

 

 

 

Statically Determinate Beam 

 
A beam is said to be statically determinate if all its reaction components can be calculated by 

applying three conditions of static equilibrium. 

Statically Indeterminate Beam 

 
When the number of unknown reaction components exceeds the static conditions of equilibrium, 

the beam is said to be statically indeterminate. To determine the unknown reactions additional 

equations of deformations are required. 

The following are the important types of beam 
 

1. Cantilever beam, 

2. Simply supported beam, 

3. Overhanging beam, 

4. Fixed beams, and 

5. Continuous beam. 

1. Cantilever beam 

A beam which is fixed or built into a rigid support at one end and free at the other end is known 

as cantilever beam. Such beam is shown in Fig. The built-in support prevents displacements as 

well as rotations of the end of the beam. Cantilever is statically determinate. 

 

 
2. Simply Supported beam 

A beam supported or resting freely on the supports at its both ends is known as simply supported 

beam. Such beam is shown in Fig. The end supports are free to rotate and have no moment of 

resistance. Simply supported beam is statically determinate beam. 
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3. Overhanging Beam 

A beam supported over two supports and extended beyond one or both the supports is known as 

overhanging beam. An overhanging beam, shown in Fig., is supported by a pin and a roller 

support, with one or both ends of the beam extending beyond the supports. It is a statically 

determinate beam. 

 

4. Fixed Beam 

A beam with both ends fixed or built into the supports or walls, is known as fixed beam. Such 

beam is shown in Fig. A fixed beam is also known as a built-in or encastred beam. It is a 

statically indeterminate beam. 

 

 
5. Propped cantilever beam 

A beam with one end fixed and the other end simply supported over a roller is known as propped 

cantilever beam or simply propped cantilever. Propped cantilever is statically indeterminate. 
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6. Continuous Beam 

A beam which is supported over more than two supports is known as continuous beam. 

Continuous beam is also statically indeterminate. 

 

 
SHEAR FORCE AND BENDING MOMENT: 

 
The beams transfer the transverse (vertical) loads to the supports. In the process of load transfer, 

they experience shear force and bending moments. 
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Shear force at any section of a beam is defined as the net or unbalanced vertical force on either 

side of the section. It is the algebraic sum of vertical components of all the forces acting on the 

beam on either left side or right side of the section. The effect of shear force is to shear off or cut 

the member at a section. It is similar to the effect of scissor cutting the page of paper. 

 

 

The moment which tends to bend the beam in plane of load is known as bending moment. In 

other word bending moment at any section of a beam is the net or unbalanced moment due to 

all forces on either side of the section. Bending moment at any section is the algebraic sum of 

the moments due to all forces acting on the beam on either right or left side of the section. The 

effect of bending moment is to bend the element. 



Shear Force and Bending Moment 

Dr. S. K. Nayak 10 

 

 

 

Sign convention: 
 

The shear force and bending moment are vector quantities and as a matter of convenience are 

assigned the following sign convention. 

Shear force acting in the upward direction to the left hand side of the section and downward 

direction to the right hand side of the section is considered to be positive & vice-versa. 

 

 
Bending moment is considered to be positive when it is acting in the clockwise direction on the 

left hand side of the section (L.H.S) (or) when it is acting in the counter-clockwise direction on 

the right hand side of the section (R.H.S) as the section & vice versa. 

 

 
SHEAR FORCE AND BENDING MOMENT DIAGRAMS: 

 
Graphical representation of variation of shear force along the length of the beam for any given 

loading condition is known as shear force diagram (SFD). If x denotes the length of the beam, 

then shear force ‘F’ is function of x, i.e. F(x). 

Similarly, graphical representation of variation of bending moment along the length of the beam 

for any given loading condition is known as bending moment diagram (BMD). If x denotes the 

length of the beam, then bending moment is function of x, and is denoted as M(x). 
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Shear force diagram and bending moment diagram are helpful for further analysis and design of 

beam. 

SFD and BMD of a beam reveal the following important information at salient points in the 

beam. These are maximum shear force, maximum bending moment, point of contralexture or 

point of inflexion, etc. 

RELATIONS BETWEEN LOAD, SHEAR FORCE AND BENDING MOMENT 

 
Consider a beam AB carrying generalized loading as shown in the figure. Take an element of 

infinitesimal length δx between section 1-1 and 2-2 at a distance of x from the left hand support 

A. The free body diagram of the element is drawn with positive sense of the shear forces and 

bending moments. 

The intensity of loading over the length of the element may be taken as constant, i.e., w. 

Considering equilibrium of the element, 

Resolving the forces vertically, V  0 

F  w x  F   F 

 F  w x 
 

 F 
 w 

 x 
 

In the limiting case, as  x  0, 
dF 

 w 
dx 

 

(1) 

 

So, the rate of change of shear force is equal to the intensity or rate of loading. 

Taking moments of the forces and couples about the section 2-2, M 2  0 

 x2
 

M   M  w 
2 

 M  F x 

 

Neglecting small quantities of higher order, we have 
 

 M 
 F

 

x 
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In the limiting case as  x  0, 
dM 

 F 
dx 

 

(2) 

 

The above equation shows that the rate of change of bending moment is equal to the shear force 

at the section. Also bending moment would be maximum at a section where shear force is zero. 

 

 

Evaluation of Shear Force and Bending Moment: 

 
Thus analysis of beam for shear force and bending moment is carried out by the following 

process. 
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1. Determine the reactions at the supports by considering the entire beam as a rigid body 

and applying equations of equilibrium. 

2. Take sections at different points on the beam near supports and load application points. 

3. Apply equilibrium analyses on resulting free-bodies to determine internal shear forces 

and bending moments. 

4. Draw shear force and bending moment diagram. 

5. Identify the maximum shear and bending-moment from plots of their distributions. 

6. Find the position of point of contaflexure or point of inflexion. 

 

 

Numerical 

 
1. Draw the Shear force and bending moment diagram for a cantilever beam of length L 

carrying a point load W at its free end. 

 
Solution: 

 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Sum of the vertical forces, V  0, VA  W () 

Taking moment about A, M A   0 , W  L  M A   0 

MA  WL (counter - clockwise ) 

Calculation of Shear force and bending moments: 
 

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B 

between B and A 0  x  L . 

Shear force at 1-1, Fx  W 

Shear force at B, i.e., x = 0 FB   W 

Shear force at A, i.e, x  L, FA  W 

Bending moment at 1-1, M x  Wx 

Bending moment at B, i.e, x  0, MB  0 
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Bending moment at A, i.e, x  L, MA  WL 
 

 

 

2. Draw the Shear force and bending moment diagram for a cantilever beam of length L 

carrying uniformly distribute load of intensity w over the entire span. 

 
Solution: 

 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Sum of the vertical forces, V  0, VA  wL 
 

Taking moment about A, M A  0 , wL  
L 
 M  0 

2 
A 

 

M A  
wL

2 

2 

 

(counter - clockwise ) 

Calculation of Shear force and bending moments: 
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x  

 

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B 

between B and A 0  x  L . 

Shear force at 1-1, Fx  wx 

Shear force at B, i.e., x = 0 FB   0 

Shear force at A, i.e, x  L, FA  wL 
 

 
 

 

 
Bending moment at 1-1, M    wx  

 x  
 2 

wx
2
 

 
 2 



Bending moment at B, i.e, x  0, MB  0 

 
Bending moment at A, i.e, x  L, M A  





wL

2
 

 
 

2 

3. Draw the Shear force and bending moment diagram for a cantilever beam of length L 

carrying uniformly distribute load of intensity w per unit length from the fixed support to the 

centre of the beam. 
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Solution: 
 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 
 

Sum of the vertical forces, V  0, VA  
wL 

2 
 

Taking moment about A, M  0 , 
wL 

 
L 
 M  0 

A 2 4 A 

wL2 
M A      

8 
(counter - clockwise ) 

 

Calculation of Shear force and bending moments: 
 

Shear force and bending moment at the free end B, FB = 0; MB = 0 

Shear force and bending moment anywhere between B and C is zero since there is no load on the 

beam in this portion when considered from right side. 
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2 

2 

2  

 

Now, considering C as the origin, take a section 1-1 at a distance of x from C between C and A 
 

0  x  
L  

. 
 

 
 

Shear force at 1-1, 

 
Fx  wx 

 
Shear force at A, i.e, x  L, F  w 

L 
 

wL 
  

A
 2 2 

 x  wx
2
 

Bending moment at 1-1, M x  wx   
2 
     

2
 

 

 L  
2
 

 
Bending moment at A, i.e, x 

L 
, M 

2 
A 

w 

 
       

2 

  
wL

2
 

8 

4. Draw the Shear force and bending moment diagram for a cantilever beam of length L 

carrying uniformly distribute load of intensity w per unit length from the free end up to a 

distance of a. 

Solution: 
 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Sum of the vertical forces, V  0, VA  wa 
 

Taking moment about A, M  0 , wa  
 

L  
a  

 M  0 
 

 A   A 

 

M   
wa 
L  2a

A 
2

 (counter - clockwise ) 

 

Calculation of Shear force and bending moments: 
 

Shear force and bending moment at the free end B, FB = 0; MB = 0 

Now, considering B as the origin, take a section 1-1 at a distance of x from B between B and C 

0  x  a. 

Shear force at 1-1, Fx  wx 
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2 

 

Shear force at B, i.e, x  0, FC  w 0  0 

Shear force at C, i.e, x  a, FC  wa 

 x  wx
2
 

Bending moment at 1-1, M x  wx   
2 
   

2
 




Bending moment at C, i.e, x  a, M A  



wa
2
 

 
 

2 
 

 

Now, take a section 2-2 at a distance of x from B between C and A a  x  L. 

Shear force at 2-2, Fx  FC  wa 

Shear force will remain same as wa from C to A. 

 Bending moment at 2-2, M  wa  
 

x  
a 




x  
 
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2 



Bending moment at A, i.e., x  L, M   
 

 
a  

  
wa 
2L  a



x wa L 
  2 

5. A cantilever of 3.5 m long carries point loads of 15 kN, 15 kN and 7.5 kN at 1 m, 1 m and 

1.5 m respectively from the fixed end. Draw the Shear force and bending moment diagram 

for the beam. 

Solution: Calculation of Shear force and bending moments: 

Portion BD: At section 1-1 at a distance x from B between B and D 0  x  1.5m

Shear force at 1-1, Fx    7.5 kN (constant from B to just right of D) 

Shear force at B, FB = 7.5 kN 

Shear force just right of D, FDL = 7.5 kN 
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Bending moment at 1-1, M x    7.5x 

Bending moment at B, i.e., at x  0, MB  7.5 0  0 

Bending moment at D, i.e., at x  1.5, MD  7.51.5  11.25kN  m 

Portion DC: At section 2-2 at a distance x from B between D and C 1.5  x  2.5m

Shear force at 2-2, Fx  7.5  15 (constant from D to just right of C) 

Shear force at D, FD = 22.5 kN 

Shear force just right of C, FCL = 22.5 kN 

Bending moment at 2-2, M x  7.5x  15x  1.5

 22.5x  22.5 

Bending moment at C, i.e., at x  2.5, MB  22.5 2.5  22.5  33.75kN  m 

Portion CA: At section 3-3 at a distance x from B between C and A 2.5  x  3.5m

Shear force at 3-3, Fx    7.5 15  15 (constant from C to A) 

Shear force at C, FC = 37.5 kN 

Shear force at A, FA = 37.5 kN 

Bending moment at 3-3, Mx   7.5x  15x  1.5  15x  2.5

 37.5x  60 

Bending moment at A, i.e., at x  3.5m, MB  37.5 3.5  60  71.25kN  m 

6. A cantilever of 1.6 m long carries a uniformly distributed load of intensity 1.5 kN/m over the 

entire span and a point load of 2.5 kN at the free end. Draw the Shear force and bending 

moment diagram for the beam. 

Solution: 

Calculation of Shear force and bending moments: 

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B 

between B and A 0  x  1.6m. 

Shear force at 1-1, Fx    2.5  1.5x 

Shear force at B, i.e., x  0, FB  2.5  1.5 0  2.5kN 

Shear force at A, i.e., x  1.6 m, Fx  2.5  1.51.6  4.9 kN 
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 

B 

 

 
Bending moment at 1-1, M  2.5x  1.5x

 x 


x 
2

 
 

 2.5x  0.75x 2 

Bending moment at B, i.e., x  0, MB  0 

Bending moment at A, i.e., x  1.6, M  2.51.6  0.751.6
2
 

 5.92 kN  m 
 

7. A cantilever of 1.5 m long is loaded with a uniformly distributed load of intensity 2 kN/m and 

a point load of 2.5 kN as shown in the figure. Draw the Shear force and bending moment 

diagram for the cantilever. 

Calculation of Shear force and bending moments: 

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B 

between B and D 0  x  0.25m. 

Shear force at 1-1, Fx   2x 
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 

D 

 

Shear force at B, i.e., x  0, FB  2  0  0 

Shear force just right of D, i.e., x  0.25m, FD  2 0.25  0.5kN 

Shear force at D, i.e., x  0.25m, FD  0.5  2.5  3kN 

 
Bending moment at 1-1, M  2x

 x  
  x 2 

x 
2

 


Bending moment at D, i.e., x = 0.25, 



M  0.252   
 0.0625 kN  m 
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 

Now, take a section 2-2 at a distance of x from B between D and C 0.25  x  1.25m. 

Shear force at 1-1, Fx    2x  2.5 

Shear force at D, i.e., x  0.25, FB  2 0.25  2.5  3kN 

Shear force C, i.e., x  1.25m, FD  21.25  2.5  5kN 

 
Bending moment at 1-1, M  2x

 x  
 2.5x  0.25

x 
2

 
 

  x 2  2.5x  0.625 

Bending moment at C, i.e., x = 1.25, MC  1.252  2.5 1.25  0.625 

 4.0625 kN  m 

8. Calculate the shear force and bending moment for the beam subjected to a concentrated load 

of W as shown in the figure. Draw the shear force diagram (SFD) and bending moment 

diagram (BMD). 

 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Taking moment about B, M B  0 , VA 
 L  W 

 L
 

2 

V    
W

 
A 

2
 

Sum of the vertical forces, V  0, VA  VB  W 

Hence, V    
W

 
B 

2
 

Calculation of Shear force and bending moments: 
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W 

 

Considering A as the origin, take a section 1-1 at a distance of x from A between A and C 

0  x  L 
2
. 

 

Shear force at 1-1, Fx   VA    
2

 

 
Shear force at A, i.e., x = 0 F  

W
 

A 
2

 

Shear force just left of C, i.e., x = 0 i.e., x  
L 

, F  
W

 
  

 
 

Bending moment at 1-1, 

 

M x  VA 

2 
LC 

2
 

 x  
W 

x 
2 

Bending moment at A, i.e., x = 0, M  
Wx 

 0 
A 

2
 

Bending moment at C, i.e., x  
L 

, M 
  

W 
 

L 
 

WL 
   

2 C 2 2 4 
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2 

2 

2 

 

Take a section 2-2 at a distance of x from A between C and B 
 L 

 x  L 
 

. 
 

 

 
Shear force at 2-2, 

 
F   

W
 

x 
2

 

 
 

 W   
W


2 

Shear force at C 
 

x  
L 

, F  
 W

 
   C 

  2 

Shear force at B, x  L, F    
 W 

B 
2
 

Bending moment at 2-2, M  
W 

x 




 
 

L 


x W  x 
2  

 
Wx 

 Wx  
WL

 

2 2 

  
Wx 

 
WL 

2 2 

Bending moment at B, i.e., x  L, M   
Wl 

 
WL 

 0 
  

B 2 2 

 Bending moment at C, i.e., x  
L 

, M 
 

 

  
W  L  

 
WL 

 
WL 

 

2 
C  

2  2  2 4 
 

9. Draw the Shear force and bending moment diagram for a simply supported beam of length L 

carrying uniformly distribute load of intensity w per unit length over the entire span. 

 
Solution: 

Evaluation of support reactions: 

The simply supported beam with uniformly distributed load over the entire span is symmetrically 

loaded symmetric beam. Hence, reactions at both supports are equal. 

 

RA  RB  
wL 

2 
 

Calculation of Shear force and bending moments: 
 

In a symmetric beam, we need only to analyze half of the beam for shear force and bending 

moment. The other half will just be the mirror-image of the first half. 
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

 
 

 
 

Considering A as the origin, take a section 1-1 at a distance of x from A between A and C 

0  x  L 
2
. 

 

Shear force at 1-1, Vx  VA 
 wx  

wL 
 wx

2 

 
Shear force at A, i.e., x = 0 F    

wl 
A 

2
 

Shear force at C, i.e., F  
wL 

 w  
L 
 0 

  

C 
 

 
 

Bending moment at 1-1, 

2 

 
M x  VA 

2 

 
 x 


 x  wL 

wx 2 2 

 
 x wx 

2 




 
wL 

x 
2 

   

wx
2
 

 
 

2 

x 
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Bending moment at A, i.e., x = 0 M x  0  

 L 
2
 

wL  L  w 
2 
 wL

2
 wL

2
 

Bending moment at C, M    
       

 
 	 	 

C
 2  2  2 4 8 

 
wL

2
 

8 

Bending moment equation is a quadratic in form, hence the bending moment diagram will be 

parabolic between A and B. 

Due to symmetry, the bending moment and shear force for the other half at respective point of 

symmetry will be same as the first half AB. 

10. A simply supported beam shown in the figure carries two concentrated loads and a uniformly 

distribute load. Analyze the beam for shear force and bending moment, and draw the SFD 

and BMD. 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Taking moment about B, M B    0 , VA   8  25 6  15 4  7.5 4 2 

VA  33.75kN 

Sum of the vertical forces, V  0, 33.75  VB  25  15  7.5 4 
 

Hence, VB  70  33.75  36.25kN 
 

Calculation of Shear force and bending moments: 
 

Considering A as the origin, take a section 1-1 at a distance of x from A between A and C 

0  x  2. 
 

Shear force at 1-1, Fx    VA  33.75 kN 

Shear force at A, i.e., x = 0 FA   33.75kN 

Shear force just left of C, i.e., x  2, FLC  33.75kN 

Shear force at C, i.e., x  2, FC  33.75  25  8.75 kN 

Bending moment at 1-1, Mx    VA  x  33.75x 
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Bending moment at C, i.e., x  2, MC  33.75  2  67.5 kN  m 

Take a section 2-2 at a distance of x from A between C and D 2  x  4. 
 

Shear force at 2-2, Fx    33.75  25  8.75 kN 

Shear force at C, i.e., x = 2, FC  8.75 kN 

Shear force just left of D, i.e., x  4, FLD  8.75kN 

Shear force at D, i.e., x  4, FD  8.75 15  6.25kN 

Bending moment at 2-2, M x  33.75x  25x  2

M x  8.75x  50 

Bending moment at C, i.e., x  4, MD  8.75 4  50  85kN  m 
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D 

 

Now, considering from the right side and taking B as the origin, take a section 3-3 at a distance 

of x from B between B and D 0  x  4. 

Shear force at 3-3, Fx    36.25  7.5x 

Shear force at B, i.e., x = 0 FB   36.25kN 

Shear force just right of D, i.e., at x = 4, Fx    36.25  7.5  4  6.25 kN 

Shear force at D, i.e., x  4, FD  6.25  15  8.75kN 

 
Bending moment at 3-3, M  36.25x  

7.5 
x 2  36.25x  3.75x 2 

x 
2

 

Bending moment at D, i.e., x = 4, M  36.25  4  3.75  4
2
  85 kN  m 

 
11. Draw the shear force and bending moment diagram for the overhanging beam shown in the 

figure. 

Solution: 

Evaluation of support reactions: 

Considering the equilibrium of the beam and applying static equations of equilibrium, 

Taking moment about A, M A  0 , VD  4  20 5  50 2  20 21 

VD  60kN 

Sum of the vertical forces, V  0, VA  60  20  2  50  20 
 

Hence, VA   110  60  50kN 
 

Calculation of Shear force and bending moments: 
 

Considering A as the origin, take a section 1-1 at a distance of x from A between A and C 

0  x  2. 
 

Shear force at 1-1, Fx  50  20x 

Shear force at A, i.e., x = 0 FA   50 kN 

Shear force just left of C, i.e., x  2, FLC  50  20  2 

FLC  10 kN 

Shear force at C, i.e., x  2, FC  10  50  40kN 
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Bending moment at 1-1, 
x2 

M x  VA  x  20  
2
 

 50x  10x 2 

Bending moment at C, i.e., x  2, MC  50  2  10  22  60 kN  m 

 

 

 

 

Now, considering from the right side and taking B as the origin, take a section 2-2 at a distance 

of x from B between B and D 0  x  4. 

Shear force at 2-2, Fx  20 kN 

Shear force at B, i.e., x = 0 FB   20 kN 
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Shear force just right of D, i.e., at x = 1, FD   20kN 

Shear force at D, i.e., x  1, FD  20  60  40 kN 

Bending moment at 2-2, M x    20x 

Bending moment at D, i.e., x = 1, MB  0 
 

Bending moment at D, i.e., MD  201  20 kN  m 

Take a section 3-3 at a distance of x from B between D and C 1  x  3. 

Shear force at 3-3, Fx    20  60  40 kN 

Shear force at D, i.e., x = 1, FD  40 kN 

Bending moment at 3-3, Mx   20x  60x  1

 40x  60 

Bending moment at C, i.e., x = 3, M x    40  3  60  60 kN  m 

It is observed that bending moment changes sign between D and C. So, point of contraflexure 

exists between D and C. 

Equating bending moment equation to zero, we get 

40x  60  0 

x  1.5 m 

Point of contraflexure: 
 

A point of contraflexure is a point where the curvature of the beam changes signs. It is 

sometimes referred to as a point of inflexion. In other words, point of contraflexure is a point 

where bending moment changes its sign from positive to negative or from negative to positive 

through zero. This means, bending moment is zero at point of contraflexure. 
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CHAPTER-6 

 

COLUMNS AND STRUTS 

 

Introduction:- 
 

A structural member, subjected to an axial compressive force, is called a strut. 

As per definition, a strut may be horizontal, inclined or even vertical. But a vertical 

strut, used in buildings or frames, is called a column. 

Definition of Column 
 

A long slender bar subjected to axial compression is called a column. 
 
The term is frequently used to describe a vertical member. Sometimes direct 
stresses dominate and sometimes flexural or bending stresses dominate. 

 
Axial Compression means the compressive forces act at the two ends of the member 
in the opposite direction and are along the same axis. 

 
Difference between columnandstrut 

 

The difference between column and strut is that former is used to describe a vertical 
member whereas latter is used for the inclined members. 

 
Short Column 

 

The failure initiates due to crushing of material and direct stresses are dominant. For short 

column, if 

 

L < 4d and kL/rmin< 30 

Where 

d = least lateral dimension. 

 

L = Unbraced length of the column. 

 

k = effective length factor depends upon the end conditions of the column. 

rmin = least radius of gyration. 

Slender or long Column 
 

In these, failure initiates due to lateral buckling and flexural stresses are dominant. If 

L > 30d 

or 
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kL/rmin> critical slenderness ratio. 

 

 
Slenderness Ratio 
The tendency of the column to buckle (fail) with ease under the action of axial 

compressive load is measured by a parameter known as slenderness ratio which is 

usually defined as the ratio of equivalent (or unsupported) length of column to the 

least radius of gyration of the column section. It is obviously unit less. 

Failure of a Column or Strut:- 

It has been observed, that when a column or a strut is subjected to some 

compressive force, then the compressive stress induced, 

  
P

 
A 

Where P = Compressive force and 

A= Cross-sectional area of the column. 

A little consideration will show that if the force or load is gradually increased 

the column will reach a stage, when it will be subjected to the ultimate crushing 

stress. Beyond this stage, the column will fail by crushing. The load corresponding to 

the crushing stress, is called crushing load. 

It has also been experienced that sometimes, a compression member does 

not fail entirely by crushing, but also by bending i.e., buckling. This happens in the 

case of long columns. It has also been observed that all the short columns fail due to 

their crushing. But, if a long column is subjected to a compressive load, it is 

subjected to a compressive stress. If the load is gradually increased, the column will 

reach a stage, when it will start buckling. The load, at which the column is said to 

have developed an elastic instability, is called buckling load or crippling load. A little 

consideration will show that for a long column, the value of buckling load will be less 

than the crushing load. Moreover, the value of buckling load is low for long columns 

and relatively high for short columns. 

Euler’s Column Theory:- 

The first rational attempt, to study the stability of long columns, was made by 

Mr. Euler. He derived an equation, for the buckling load of long columns based on 

the bending stress. While deriving this equation, the effect of direct stress is 

neglected. This may be justified with the statement that the direct stress induced in a 

long column is negligible as compared to the bending stress. It may be noted that the 
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Euler’s formula cannot be used in the case of short columns, because the direct 

stress is considerable and hence cannot be neglected. 

Assumptions in the Euler’s Column Theory:- 

The following simplifying assumptions are made in the Euler’s column theory:- 

1. Initially the column is perfectly straight and the load applied is truly axial. 

2. The cross-section of the column is uniform throughout its length. 

3. The column material is perfectly elastic, homogeneous and isotropic and 

thus obeys Hooke’s law. 

4. The length of column is very large as compared to its cross-sectional 

dimensions. 

5. The shortening of column, due to direct compression (being very small) is 

neglected. 

6. The failure of column occurs due to buckling alone. 

Sign Conventions:- 

Though there are different signs used for the bending of columns in different 

books, yet we shall follow the following sign conventions which are commonly used 

and internationally recognized. 

 

 
1. A moment, which tends to bend the column with convexity towards its 

initial central line as shown in (a) is taken as positive. 

2. A moment, which tends to bend the column with convexity towards its 

initial central line as shown in (b) is taken as negative. 

Types of end Conditions of Columns:- 

In actual practice there are a number of end conditions for columns. But usually 

four types are important from subject point of view. They are as follows: 

 Both ends hinged 
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p 

EI 

P 

EI 

P 

EI 

P 

EI 

P 

EI 

 Both ends fixed 

 One end is fixed and other end is hinged, and 

 One end is fixed and other end is free. 

Columns with both ends hinged (Derivation of expression for Critical load) 

Consider a column ABof length lhinged at both of its ends A and B and carrying a 

critical load at B. As a result of loading, let the column deflect into a curved form 

AX1B as shown in Figure below. 

Now consider any section X, at a distance x from A. 

Let P = Critical load on the column, 

Y = Deflection of the column at X. 

 Moment due to the critical load P, 

M = -P.y 

d 
2
 y 

 EI 

 

 
 EI 

dx
2
 

 
 

d 
2
 y 

 

 

dx
2
 

 P.y 

 

 

p.y  0 

… (Minus sign due to 

Concavity towards initial 
Centre line) 

 

d 
2
 y 

or 
dx

2
 
 

9 
.y  0 

EI 
 

The general solution of the above differential equation is 
 

   
y  A.cos x   B sin x 

   


Where A andB are the constants of integration. We know that when x=0, y=0. 

Therefore A=0, Similarly when x=l, then y=0. Therefore 

 
0  B sinl 

 
 

A little consideration will show that either B is equal to zero or sinl   0 . Now if 

 

we consider B equal to zero, then it indicates that the column has not bent at all. But 


if sinl 


 


  0 


 l 



  0    2  3  ....... 



P 

EI 
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P 

EI 

Now taking the least significant value, 
 

 
l   
 





Or p 
 2 EI 

 

 

2 

Columns with One End Fixed and the Other Free:- 
 
 

 

 2 EI 
p  

4l 
2

 



Columns with Both Ends Fixed:- 
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4 2 EI 
p 

 2 

 

Columns with One End Fixed and the Other Hinged:- 
 

 

 

2 2 EI 
p 

 2 



Equivalent length/Effective length of a column 
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The equivalent length of a given column with given end conditions, is the length of an 

equivalent column of the same material and cross-section with both ends hinged and 

having the value of the crippling load equal to that of the given column. 

EXAMPLE 1:- A steel rod 5 m long and of 40 mm diameter is used as a column, with 
one end fixed and the other free. Determine the crippling load by Euler’s formula. 
Take E as 200 GPa. 

SOLUTION. Given:-Length (l) = 5 × 103 mm ; Diameter of column (d) = 40 mm and 
modulus of elasticity (E)= 200 GPa = 200×103 N/mm2. 

 

We know that moment of inertia of the column section, 

I  



64 

 

 (d )
4
 

 
(40)

4
  40000 mm4 

64 

Since the column is fixed at one end and free at the other, therefore 
equivalent length of the column, 

Le = 2l = 2 × (5 × 103) = 10 × 103 mm 

 

 Euler’s crippling load, PE = 
 2EI 

 
 

2 

e 

 
 2 (200 10

3
) (40000 ) 

(1010
3
)
2
 

 
 2480 N 

= 2.48 kN Ans. 

EXAMPLE 2:- A hollow alloy tube 4 m long external and internal diameters of 40 mm 
and 25 mm respectively was found to extend 4.8 mm under a tensile load of 60 kN. 
Find the buckling load for the tube with both ends pinned. Also find the safe load on 
the tube, taking a factor of safety as 5. 

SOLUTION Given:-Length l, = 4 m ; External diameter of column (D) = 40 mm ; 

Internal diameter of column (d) = 25 mm; Deflection 

kN= 60 × 103 N and factor of safety = 5. 

(l) = 4.8 mm ; Tensile load = 60 

 

Buckling load for the tube 
We know that area of the tube, 

A = 
 
 D2

  d 
2
  

 402  
 252  765.8  mm2 

4 4 
And moment of inertia of the tube, 

I = 



64 
 D

4
  d 

4
    404  

 254  106 
64 

500 mm4 

We also know that strain in the alloy tube, 

e  
l 


l 

4.8 

4 10
3
 
 0.0012 

And modulus of elasticity for the alloy, 

E =  
Load 

Area  Strain 
 

60 10
3
 

765.8 0.0012 
65 290 N/mm2 

Since the column is pinned at its both ends, therefore equivalent length of the 
column, 

Le = l= 4×103 mm 

L 
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k D D 

1 

1 


 D 

2 2 2 

 Euler’s buckling load, PE = 
 2

EI 
 

 

2 

e 

 2  65290 106500 
 

 


 4 10

3
 2 

 4290 N 

= 4.29 kN Ans. 
Safe load for the tube 

We also know that safe load for the tube 

 
Bucklingload 

Factorofsafety 
 

4.29 
 0.858 kN Ans. 

5 

EXAMPLE 3:- Comparethe ratio of the strength of a solid steel column to that of a 

hollow of the same cross-sectional area. The internal diameter of the hollow column 

is ¾ of the external diameter. Both the columns have the same length and are 

pinned at both ends. 

SOLUTION. Given:-Area of solid steel column AS= AH (where AH= Area of hollow 

column); internal diameter of hollow column (d) is 3D/4 (where D = External 

diameter) and length of solid column (ls) = lH =(where lH =Length of hollow column). 

Let D1     = Diameter of the solid column, 

kH    = Radious of gyration for hollow column and 

kS = Radious of gyration for solid column. 

Since both the columns are pinned at their both ends, therefore equivalent 

lengths of the solid column and hollow column, 

LS = lS = LH = lH = L 

We know that Euler’s crippling load for the solid column, 

 2 EI  2 E.A .k 
2
 

Ps 
L

2
S 

 S S  

L2 

Similarly Euler’s crippling load for the hollow column 

 2EI  2E.A .k 
2
 

PH 

Dividing equation (ii) by (i), 

L
2

H 
 H H  

L2 

D
2
  d 

2
  3D  

2

 

 
 P  k 

2   

 D
2
  d 

2
 D   4 H   H   16    




PS    S 
 

1 1 1 

16 
25D

2
 

= 
16D

2
 

Since the cross-sectional areas of the columns is equal, therefore 
     3D 

2   7D
2
 

 D
2
  (D

2
  d 

2
 )  D

2
      

4 4 

 

 D
2
 


7D

2
 

16 

4   4   4 16 

Now substituting the value of D2 in equation (iii), 

2 

L 

1 

1 
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xis. 

 PH 

PS 

25D
2
 

7D
2
 

16 

 
25 

7 

 

Ans. 

16 

 

EXAMPLE 4:- An I section joist 400 mm ×200 mm × 20 mm and 6 m long is 

used as a strut with both ends fixed. What is Euler’s crippling load for the 

column? Take Young’s modulus for the joist as 200 GPa. 

SOLUTION. Given:-Outer depth (D) = 400 mm ; Outer width (B) = 200 mm ; Length 

(l) = 6 m = 6 ×103 mm and modulus of elasticity (E) = 200 GPa = 200 ×103 N/mm2 . 

From the geometry of the figure, we find that inner depth, 

d = 400 – (2 ×20)= 360 mm 

and inner width, b = 200-20 = 180 mm 

We know that moment of inertia of the joist section about X-X a 

 
I XX 


 1 BD

3
  ba

3
 

12 

= 
 1  200  4003  

 180  3603 mm4 
12 

= 366.8 × 106 mm4 …(i) 

 2  2003   360  203 
4 

Similarly IYY = 2 


  mm 
12  12 

= 2.91 ×106 mm4 

Since IYY is less than IXX, therefore the joist will tend to buckle in Y-Y direction. 

Thus, we shall take the value of I as IYY= 2.91 × 106 mm4. Moreover, as the column 

is fixed at its both ends, therefore equivalent length of the column, 

L  
 l 


e 
2

 
6 10

3
 

2 
 310

3
 mm 

 Euler’s crippling load for the column, 

PE 
 2 EI 

 
 

2 

e 

 2 200 10
3
 2.9110

6
 


 310

3
 2 

 
 638.210

3
 N 

= 638.2 kN Ans. 



L 



 

 

 

Mohr’s circle: 

 
Mohr’s circle is a graphical representation of stress transformation equations. The equations of 

stress transformation describe a circle if normal stress and shear stress are represented as abscissa 

and ordinate respectively. Each point on the circumference of Mohr’s circle represents a plane 

through the centre of the circle and the coordinates (σ, τ) of the point represents the normal stress 

(σ) and shear stress (τ) on the given plane. 

Mohr’s circle can be drawn from a given state of stress at a point in a structural member. 

Consider a stress element representing the state of stress at a point as shown in the figure. 

 

 
Stress transformation equations for normal and tangential components on a plane are given by 

 

Normal stress on the plane,   
 x   y 

2 
 
 x   y 

cos 2  
2 

xy 

 

sin 2


(12) 

 

Shear stress on the plane, 


  
  y 

2 


sin 2   xy 

 
cos 2


(13) 

 

Rearranging the equation (12), we have 
 

  
 x   y 

 
2
 

 
 x   y 

cos 2  
2 

xy 

 

sin 2


(14) 

 

Squaring both sides of equation (13) and (14) and adding them together, we have 

x 



 

 





 
x y 
   

2 

2 
  2 

xy 

2 


2 


  

 x
 
  

2
 

y 
 

    
x
 
  

2
 

y 

  2 

 

   
 

2 



 

 2  
xy 

 


  

 x
    

2
 

y 
  

2
 

  2  
 




       
  

 




   
This is the equation of a circle with centre  

x
 

 2 


,0




and radius R 


and 

this circle is known as Mohr’s circle named after the German Civil Engineer Otto Mohr (1835- 

1918). It provides a simple and clear picture of an otherwise complicated analysis. 

Procedure for drawing Mohr’s circle: 
 

1. Draw coordinates axes in Cartesian coordinate system with O as origin, normal stress (σ) 

as abscissa (positive to the right) and shear stress (τ) as ordinate (positive upward). 

  x   y 

2. Locate the centre C of the circle at the point having coordinates 



,0 . 
2 

3. Locate point A, representing the state of stress on the vertical plane, i.e., face x of the 

element by plotting its coordinates σx and τ. Point A on the circle corresponds to θ = 0
0
 

and represents the vertical plane. 

4. Locate point B, representing the state of stress on the horizontal plane, i.e., face y of the 

element by plotting its coordinates σy and -τ. Point A on the circle corresponds to θ = 90
0
 

and represents the horizontal plane. 

5. Join AB so as to intersect the normal stress axis at C. 

6. With the point C as the centre and CA (= CB) as radius, draw Mohr’s circle through 

points A and B. This is the required Mohr’s circle which has radius R. 





 x y 
  

2 

2 
  2 

xy 

y 



 

 

p 

 

 
 

The stress state on an inclined plane with an angle θ is represented at point D on the Mohr's 

circle, which is measured an angle 2θ counter- clockwise from point A to show the coordinate at 

D. 

 

Coordinates of D: 

 

OD'  OC  CD'  
1 
2 

x 

 

 
  y 

 
 R cos2  2 



 
1 
2 

x   y  R cos 2 cos 2  R sin 2 sin 2 p 

 

 

But R cos 2 p 
 

1 
2 

x   y  and R sin 2 p   xy 

p 



 

 

p 

 

Therefore, OD'  
1 
2 

x   y 
 

1 
2 

x   y cos 2   sin 2




Similarly, DD'  R sin 2  2 


DD'  R sin 2 cos 2 p  R cos 2 sin 2 p 

 

DD'  
1 
2 

x   y sin 2   cos 2









Problem. The state of stress in a material is as shown in the figure. Determine 

 
a. the magnitude and directions of principal stresses, and 

b. the magnitude of maximum shear stresses and its direction. 
 

 

xy 

xy 
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Shear Stress Distribution 

 
Except for the case of uniform bending or pure bending as discussed in the section of simple 

bending, for general transverse loading condition, a beam is subjected to varying shear force as 

well as bending moment along the beam. The bending moment at a section cause normal stresses 

(σ) called bending stresses to occur through the depth of the beam. The strength of beam and 

hence its design often dominated by bending stress. However, as the beams become short and 

thick, traverse shear become dominant. 

The shear force at any section of a beam produces vertical (transverse) shear stresses (τ) varying 

through the depth of the beam. This vertical shear stress is accompanied by complimentary 

longitudinal (horizontal) shear stress of equal magnitude acting perpendicular to the transverse 

section in the direction of length. 

Shear stress distribution through the depth of the section is as shown in the Fig. 
 

 

 

Transverse shear in bending: 

 
Transverse shear can often be difficult to understand. To visualize, let us consider a cantilever 

beam, comprising of several wooden planks as shown in the Fig., carries a point load at its free 
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end. Imagine two cases, (i) planks are unglued and bend independent of each other (ii) the planks 

are bonded together with the help of glue or anchor bolts. 

In the first case Fig.(a), the planks will bend independently and slide past each other. In the 

second case Fig. (b), the glue or anchor bolts will prevent the planks to slide past each other. 

This resistance to sliding or the resistance to horizontal force parallel to the beam’s surface 

generates the shear stress within the material. 

 
 

 
Distribution of shear stress in beam section: 

 
Consider an elemental length, dx of a beam between two sections AB and CD in a beam under 

generalized transverse loading as shown in the Fig. 3. The 3D view of beam element is also 

shown in Fig. 4 for better clarity. 
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M 

Let M and M + dM be the bending moment at sections AB and CD respectively as shown in the 

Fig. Let, it is required to find the shear stress intensity on section AB at the level of EF at a 

distance of y from the neutral axis. 

Consider a rectangular element EFGH, of width b and thickness dy. Let da be the area of the 

element. Let σ1 and σ2 be the bending stress on the elementary area at the level y at section AB 

and CD respectively. 

 

Bending stress on the elementary area at the level y at section AB,  1  
I 

y 

 

Bending stress on the elementary area at the level y at section CD,  2  
M  dM 

y 
I 

 

Force on the elementary area at the level y at section AB  
M

 
I 

 

y.da 

 

Force on the elementary area at the level y at section CD  
M  dM

 
I 

 

y.da 

 

 

The unbalanced force on the elementary area  
dM 

I 
y.da  

dM
 

I 
y.b.dy






Total unbalanced force on the portion of the beam above EF and between sections AB and CD 
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

y2  dM dM  
y2

 

 y.bdy 
I I 

1 

 yda 
y1 

 

 
dM 

ay , 
I 

 

where ay is the moment of area above level EF about the neutral axis. 

 
This unbalanced horizontal force tries to shear off the portion of beam above EF and between the 

section AB and CD from the rest of the portion below EF. The equilibrium of the portion above 

EF is ensured by the shearing resistance of the material of beam on the plane at level EF. 

Horizontal shear stress at level EF,   
Unbalanced force

 
shear area 

 
dM 

I 

ay 

bdx 
 

 
dM ay 

dx  Ib 
 

 

We know, shear force at the section, F  
dM 

dx 
 
 

Hence,   
F 

ay 
Ib 

 

Where A = area of cross section of beam above the level EF 
 

y  Distance of the centroid of the area above the level EF, from the neutral axis 

 

For a given cross section of beam, F 
I
 remains constant any point along the depth of the beam. 

 
 

Therefore, the shear stress at any point on a cross section is proportional to 
ay 

. For sections of 
Ib 

uniform width, the shear stress will have maximum value at neutral axis, since ay is maximum at 

neutral axis. The shear stress will have zero value at top and bottom layers of cross sections, 

since ay is zero at these layers. 

 

Shear stress distribution for beams of standard sections: 

 
a) Rectangular section: 

y 
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2 

 

Consider a rectangular section ABCD of width b and depth d is subjected to a shear force of F. 

Let τ be the shear stress intensity at any level EF at a distance of y from the neutral axis as shown 

in the Fig. 

 

 

 
We know,   

Fay 

Ib 
 

Here, ay is the moment of the shaded area above EF. 

 
Area ABFE, a  b

 d 
 y 






 
 



 Centroid of the area ABFE from neutral axis, y  y  
1  d 

 y 







  

2  2 



 
1  d 

 y 






  Shear stress on EF 


2  2 

 
  

F 
ay 











F 

b
 d 

 y 
 1  d 

 y 


Ib Ib  
 

2 
  


  2  2 


F  d 

2
 2 

 
2I 

 4  
 y  



Shear stress variation along the depth is parabolic in nature. 
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The maximum shear stress occurs when y = 0, i.e., at neutral axis. 
 

F  d 
2
  Fd 

2
 

 max 
 

2I  4 
 0 

 8I 
 

 
Fd 

2
 
 

12 
  

8 bd 
3
 

 

 
3 
 

F 

2 bd 
 

Minimum shear stress, 




min  0 occurs at the top and bottom edge, i.e., at y  

d 
. 

2 
 

 

Average shear stress,  
avge 

  
Shear force 

Cross - sectional area 

 

 
F 

bd 
 

 
Maximum shear stress,   

3 F  1.5
max 

2 bd 
avge 

 

Thus, maximum shear stress is 1.5 times the average shear stress in rectangular section and 

occurs at neutral axis. 

b) Circular section: 

 
Consider circular section of radius, r subjected to a shear force of F. Let τ be the shear stress 

intensity at any level EF at a vertical distance of y and angular distance of  from the neutral 

axis as shown in the Fig. 

Consider an elementary rectangular strip EFGH of thickness dy at a distance of y from the 

neutral axis. 

Width of the strip, b  2r cos


Vertical distance, y  r sin 


Area of the elementary strip, da  bdy  2r cos.r cos.d
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 2r cos
2
 .d






Consider an elementary rectangular strip EFGH of thickness dy at a distance of y from the 

neutral axis. 

Width of the strip, b  2r cos


Vertical distance, y  r sin 


Area of the elementary strip, da  bdy  2r cos.r cos.d



 2r 
2
 cos

2
 .d

Moment of elementary strip about neutral axis,  day  2r 
2
 cos

2
 .d.r sin 

 2r 
3
 cos

2
  sin .d





Moment of the area above EF about neutral axis, ay 

 2 

 2r 
3
 cos

2
  sin .d











Let 

 

 

 
cos  t  sin .d  dt 

 2 

 2r 
3
 cos

2
  sin .d






When    , t  cos ;   

 
, t  cos 

 
 0 

2 2 
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Hence, 

 

0 

ay  2r 
3
 t 

2
dt 




t 3  

0

 

 

 

 

  cos3  
 2r 3      2r 3  

 3 



 
2 

r 3 cos3 
3 

 3 





Moment of inertia of circular section about neutral axis, I  
1 
r 4 

4 
 

 Shear stress   
F 

ay 
Ib 

F 

I  2r cos
 

2 
r 3 cos3 

3 
 

 
F 

r 2 cos2  
3I 

 

 
F r 2  y 2 
3I 

F r 2  r 2 sin 2  
3I 

 

Hence, variation of shear stress along the depth is parabolic in nature. 

Shear stress is maximum when y = 0, at neutral axis. 

   F 
r 

2 
 

max 
3I

 

 
 

Fr 
2
 
 

4 
 

 
 

4 F 
 

3 r 
4
 

 
4 



3 r 
2
 

3 
avg 

 

Shear stress is zero at top and bottom layer, i.e., y = r 
 

c) Isosceles triangular: 

 
Consider a isosceles triangular section ABC of base b and height h as subjected to a shear force 

of F. Let τ be the shear stress intensity at any level EF at a vertical distance of y from the apex, A 

as shown in the Fig. 7. 
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Moment of inertia of triangular section about neutral axis, 

bh
3
 

I 
36 

 

Let b’ be the width of the triangular portion, AEF above EF. 
 

From similar triangles AEF and ABC, we have 

 

b  
b 

y 
h 

 
 

 

Centroid of triangle AEF from the neutral axis, y  
2h 

 
2 y 

 
2 
h  y

3 3 3 

 

Area of the triangular portion AEF, a  
1 

by  
1 b 

y 2 

2 2 h 
 

 Shear stress   
F

 ay  
F 

 
1 b 

y 
2
  

2 
h  y

 	 










At, y = 0, τ = 0 

 

At, y = h τ = 0 

Ib



 
F 

3I 

I 
b 

y 
2 h 3 

h 

yh  y
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2h F 2h  2h  2Fh
2
 

At neutral axis, y  , 
3 

 na  
3I 

  h   
3  3  27I 

 
2Fh

2
 

 
8  F 

 3  

27  
bh

 
36 

3  bh  





For maximum shear stress, 
d 

 0
 

dy 
 

 
F h  2 y  0 
3I 

 

y  
h

 
2 

 

F h  h  Fh
2
 

Hence, maximum shear stress,  max   h   3I 2 2 12I 
 



 
Fh

2
 

 
3F 

 

 

 
Average shear stress, 

 

 

 avg 

12 



 
F 

1 
bh 

bh
3
 bh 

36 
 

 
2F 

bh 

 

 

Maximum shear stress 

2 
 

3F 

 
 max   bh 

 

 

 

 1.5 

Average shear stress  avg 
2F 

bh 

 max  1.5 avg 

 

 
Shear stress at Neutral axis 

Average shear stress 
 
 na 

 avg 

8F 
 

 

 3bh  
4 

2F 3 
 

bh 
 

 
na  

4 
 

3 

 

 
avg 
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2 



 

d) I-section 

 
Consider an I-section of flange width B and overall depth D. Let b and d be the thickness and 

depth of web. The section is subjected to a shear force of F. 

Shear stress distribution in the flange 
 

Let τ be the shear stress intensity at any level EF on flange at a vertical distance of y from the 

neutral axis as shown in the Fig. 8. 

Area above EF  B
 D 

 y 





 
 



Centriodal distance of this area from the neutral axis  y  
1  D 

 y 
 
 

1  D 
 y 




 
2  2 

  
 2  2 






Moment of the area above the plane EF about the neutral axis, 

 
ay  B

 D 
 y 

 1  D 
 y 





	   

2 
  





 
B  D

2
 

2  4 

 2  2 



 y 
2
 






F F B  D
2
 2 


	   

Shear stress on EF   
IB 

ay  
IB 

 
2 
 4

 
 y 


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

2 

2 

2 

F  D
2
 2 

 

2I  4 
 y 




Thus, the shear stress distribution in flange is parabolic in nature. 
 

At the top of the flange, i.e., at y  
D 

, shear stress intensity, τ = 0. 
2 

 

At the junction of flange and web, i.e., at y  
d 

, 
2 

 

  
F  D

2
 

d 
2
  F 

   D2
  d 

2
 




Shear stress distribution in the flange 

2I   4 4  8I 

 

Let τ be the shear stress intensity at any level EF on flange at a vertical distance of y from the 

neutral axis as shown in the Fig. 9. 

Area above the plane EF = Area of the flange + area of the web above EF 
 

a  B
 D  d  

   
 d 


  b
  

 y 









 Centriodal distance of flange area from the neutral axis y 
 

  
d 
 

1  D 
 

d  
 

1  D  d 


1 
2 2  2 

  
  



 Centriodal distance of web area from the neutral axis y 
 

 

 y  
1  d 

 y 
 
 

1  d 
 y 






2 
2  2 

  
 2  2 

2 

2 
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2 

 2 

 2 



2 

 

 



Moment of the total area above EF about neutral axis, 
 

 ay  a y 
 

 

  a y  B
 D  d  

 
1  D  d  

 b
 d 

 y 
 
 

1  d 
 y 




1   1 2    2     
   2  

  
 2  2 



 
B D

2
  d 

2
 b  d 

2
 

y 
8 

 
 Shearstress on EF, 









F 

ay 
Ib 

 
F  B 
 D 2 

2  4 

 

 

 
 d 2 








b  d 2 

y  
Ib  8 2  4 



Hence, shear stress distribution in the web is also parabolic in nature. 
 

At the junction of flange and web, i.e., at y  
d 

, 
2 

 

 Shearstress on EF, 
F 
 

B D 2  d 2 
Ib 8 

 

It can be observed that at the junction of flange and web, there is a sudden jump in the shear 

stress intensity. 

At neutral axis, i.e., at y = 0, the shear stress is maximum. 
 

 
 F  B  2  2  

bd 
2
 



max 
Ib 
 

8 
D d 

8  




From the shear stress distribution diagram, it is evident that most of the shear stress on the 

section is carried by the web. 

2 
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Numerical 

 
1. A 2.5 m long rectangular timber beam of 125 mm wide and 250 mm deep is carrying a 

uniformly distributed load of 60 kN/m. Determine the maximum shear stress intensity and 

draw the variation of shear stress along the depth of the beam. 

Solution: 
 

Given: Length of beam, l = 2.5 m, Width, b = 125 mm, Depth, d = 250 mm 
 

Uniformly distributed load, w = 50 kN/m 

 

 

 
Maximum shear force in the beam, F  

wl 
 

60  2.5 
 75 kN

 

 

 

 

 
Average shear stress, 

2 

 

 
 

  
F

 

2 

 

 7510
3
 N 

 

 
751000 

 2.4 N / mm2 
 

avg 
bd 125 250 

 

Maximum shear stress,  
max 

 1.5 2.4  3.6N / mm2 
 

2. A rectangular beam of 100 mm wide is subjected to a maximum shear force of 45 kN. If the 

maximum shear stress in the beam is 3 N/mm
2
, calculate the depth of the beam. 

Solution: 
 

Given: Width of beam section, b = 100 mm, Maximum shear force, F = 45 kN, and 
 

Maximum shear stress in the beam,  max  3 N / mm2 
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 

Let the depth of the beam be d mm. 
 

Average shear stress,    
F  

 
45 1000 

 
450 

N / mm
2 

   

avg 
bd

 
100d d 

 

Maximum shear stress, 

 

 

 
 



 max  1.5 avg 

3  1.5  
450

 
d 

d  225 mm 
 

3. A circular beam section of 150 mm diameter is subjected to a maximum shear force of 50 

kN. Evaluate the maximum shear stress and plot the shear stress distribution diagram across 

the depth of the section. 

Solution: 

 
Given: Diameter of circular section, d = 150 mm, 

 

Maximum shear force, F = 50 kN 

 
Area of the section, 

 
a  

 
d 2 

 
1502  17671.458 mm2 

 

 
Average shear stress, 

 

 avg 

4 

 

 
F 


a 

4 
 

50 1000 
 

 

17671.458 

 

 
 2.83 N / mm2 

 

Maximum shear stress,  
max 

 1.5  2.83  4.245 N / mm2 
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4. A beam of isosceles triangular section of base width 120 mm and height 150 mm is subjected 

to a shear force of 15 kN, Find the maximum shear stress and the shear stress at neutral axis. 

Draw the shear stress variation diagram along the depth of the section. 

Given: Base width, b = 120 mm, Height, h = 150 mm 
 

Maximum shear force, F = 15 kN 

 
Maximum shear stress is at a height of 

 
h 

from the base of the triangle. 
2 

 

 

Maximum shear stress  
max 

 
3F 

bh 
 

3 15 1000 
 2.5 N / mm

2 

120 150 
 

 

Shear stress at the neutral axis,  na 
 

8F 

3bh 
 

8 15 1000 
 2.222 N / mm2 

3 120 150 
 
 

 
 

Alternatively 

 
Area of the section, 

 
a  

1 
 bh  

1 
120 150  9000 mm2 

 

 
Average shear stress 

 

 
avg 

2 2 

 
F 
 

15 1000 
 1.667 N / mm2 

a 9000 

Maximum shear stress,  
max 

 1.5 1.667  2.5 N / mm2 

Shear stress at the neutral axis,  na  
4 
 

3 
avg 

 
4 
1.667  2.222 N / mm2 

3 
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5. An I-section has an overall depth of 240 mm with horizontal flanges each measuring 120 mm 

x 20 mm and a vertical web 200 mm x 20 mm. It is subjected to a vertical shear force of 200 

kN. Find the maximum shear stress and its position. Draw the shear stress distribution 

diagram. 

Solution: 

Shear force on the section, F  200 kN 

Moment of inertia of the I-section about the neutral axis, 

 
120  240

3
 

I 
12 

 
100  200

3
 

12 

 
 71.57333310

6
 

 
mm

4
 

 

 
 

Shear stress in the flange at the junction of flange and web: 
 

ay  120  20 110  264000 mm
3
 

 

 

Shear stress,  
Fay 




Ib 

200 10
3
  264000 

 

 

71.75333333310
6
 120 

 

 6.132 N / mm
2
 

 

 

Stress in the web at the junction of flange and web  
200 10

3
  264000 

71.75333310
6
  20 

 36.792 N / mm
2
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2 

2 



Shear stress at neutral axis 
 

ay  120  20 110  20 100  50  364000 mm
3
 

 

 

Shear stress, 
Fay 

Ib 
 

200 10
3
  364000 

71.75333333310
6
  20 

 

 50.729 N / mm
2
 

6. The unsymmetrical I-section shown in the Fig. is subjected to a shear force of 40 kN. Draw 

the shear stress distribution across the depth showing the salient points. 

Solution: 
 

Distance of the centroid from the bottom fibre, 

 
150  20 10  20  200  (20  

200
)  100  20  

 
20  200  

20 




yb 


 107.78 mm 

 
 

150  20  20  200  100  20 

 

Distance of the centroid from the top fibre, yt    240  yb    240 107.777 

 132.22 mm 
 

Moment of inertia about the neutral axis, 
 

150  203   20 
2

 
 

 

20  2003    200 
2

 
 

I   150  20 107.78   
12   12 

 20  200   20 


107.78
2 








 72655555.60 mm

4
 

 
100  203 

12 
 100  20 


132.22 



20 
2

 






Shear stress at the junction of top flange and web: 

 

Area above the bottom of top flange, a  100  20  2000 mm
2
 

 

 
C.G of this area from the neutral axis, y  y  

20 
 132.22  

20
 

  

t 2 2 

 122.22 mm 

2 

2 
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Stress in the flange at the junction of top flange and web 
F 

Ibf 

 ay 

 

 
40 10

3
 

72655555.60 100 
 100 20



122.22 

 

 1.346 N / mm
2
 

 

Stress in the web at the junction of top flange and web 

 
40 10

3
 

72655555.60  20 
 100 20


122.22 

 

 6.728 N / mm
2
 

 
 

 

Shear stress at neutral axis: 
 

ay of area above neutral 

 
 

axis  ay of flange 

 
 

about N.A  ay of web about N.A 
 

 100  20 

132.22  

20  
 20  132.22  20 

132.22  20





 370373.284 

 









 
F 
 







2 

 

 
 

40 10
3
 






Maximum shear stress at neutral axis, max 

Ib 
ay 

72655555.6  20 

370373.284 

 

2 
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 10.195 N / mm
2
 

 

Shear stress at the junction of bottom flange and web: 

 

Area of the bottom flange, a  150  20  3000 mm
2
 

 

 
C.G of this area from the neutral axis, y  y  

20 
 107.78  

20 
 97.78 

  

b 2 2 

Stress in the web at the junction of web and bottom flange 

 
40 10

3
 

72655555.60  20 
 3000 97.78 

 8.075 N / mm
2
 

Stress in the bottom flange at the junction of web and bottom flange 

 
40 10

3
 

72655555.60 150 
 3000 97.78 

 1.077 N / mm
2
 

7. A beam of I-section 500 mm deep and 200 mm wide has flanges 25 mm thick and web 20 

mm thick. It carries a shearing force of 425 KN at a section. Calculate the maximum 

intensity of shear stress in the section. Also calculate the total shear force carried by the web 

and draw the shear stress distribution across the depth of the section. 

Solution: 

Moment of inertia about neutral axis, 

 

 
200  500

3
 

I 
12 

 

 
180  450

3
 

12 
 

 716458333.333mm
4
 

 

Maximum shear stress intensity will occur at the neutral axis. 
 

 

 

 
Where F = maximum shear force 

 
max 

 
F 

ay 
Ib 

 

ay  moment of the area above the neutral axis about the neutral axis. 
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2 

I = Moment of inertia of the section about neutral axis. 
 

b = breath of the web 
 

The section is symmetrical about both horizontal as well as vertical axis. 
 

Hence centroid is horizontal centroidal axis is half-way, i.e., 250 mm from the top as well as 

bottom edge. 

ay  200  25  
 

225  
25  

 225  20  
225

 
 

   
  2 

 

 1693750mm
3
 

 

 
max 

 
F 

ay 
Ib 

425000 
 

 

716458333.333 20 
1693750 

 

 50.236 N / mm
2
 

 
 

 

Shear stress in the flange at a distance y from the neutral axis, 

 
 F 

 ay 
 F 

 

B250  y 

250  y




IB IB 


 
F 2502  y 2 
2I 

2 


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2  

2 

  
F 62500  y 2 
2I 

 

Shear resistance offered by elementary strip of the flange 200 mm wide and dy mm deep, 
 

 da 
F 62500  y 2 200dy 
2I 

 

 

 
100F 62500  y 2 dy 

I 
 

100F 
250

 Shear resistance of one flange 

 62500  y dy 
225 

 

100F  y 3  
250 

 62500 y 
I 


 225 

 

100F   2503 2253 

 62500250  225   I 3 
3 







 
100  425 

716458333.333 

 


151041.67  8.96 kN 

 

Total shear resistance of two flanges  2  8.96  17.62 kN 
 

Total shear force carried by the web  425 17.62  407.08 kN 
 

Shear stress distribution across the section: 
 

Shear stress in the flange at junction of flange and web 
 

 
F 
 Moment of the area about N.A 

IB 
 

 
425000  200  25 

 
225  

25 




716458333.333 200 
 



 3.522 N / mm
2
 

 

Shear stress in the web at junction of flange and web  
200 

 3.522  35.22 N / mm2 
20 

3 

I 
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8. A simply supported beam of 4 m length carries a uniformly distributed load of intensity 50 

kN/m over the entire span. If a T-section of flange size 150 mm x 50 mm and web size 50 

mm x 150 mm is used as beam section, find the maximum shear stress and draw the shear 

stress distribution diagram across the depth with values at important points. 

Solution: 
 

Given: Length of beam, l = 4 m, Uniformly distributed load, w = 50 kN/m 
 

Maximum shear force at the support, F  
wl 

 
50  4 

 100 kN 

2 

 
Distance of the centroid from the bottom fibre, 

2 

 

y  
50 150  75 150  50  (150  25) 

b
 50 150 150  50 

 125 mm 
 

Distance of the centroid from the top fibre, yt  150  50 yb  200 125 

 75 mm 
 

Moment of inertia about the neutral axis, 
 

50 150
3
 

I 
12 

 50150 75  252  
150 50

3
 

12 
 50 150 125  752

 

 

 53125000mm
4
 

 

Shear stress at the junction of flange and web: 

 

Area above the bottom of flange a  150 50  7500 mm
2
 

 

 

C.G of this area from the neutral axis, y  yt 
 

50 
 75  25 

2 
 

 50 mm 

 
Stress in the flange at the junction of flange and web 




F 

Ibf 

 

 
 ay 

 

 
100 10

3
 

53125000 150 
 7500  50 
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2 

 4.706 N / mm
2
 

 

Stress in the web at the junction of flange and web 
100 10

3
 

 
 

53125000 50 
 7500  50 

 

 14.12 N / mm
2
 

 
 

 

Shear stress at neutral axis: 
 

ay of area above neutral 

 
 

axis  ay of flange 

 
 

about N.A  ay of web about N.A 
 

 150  50 75  
50  

 50  25 
25

 
  

  2 
 

 390625 
 

 

Maximum shear stress at neutral axis,  max 
 

F 
 ay 

Ib 

100 10
3
 

 

 

53125000 50 
 390625 

 

 14.705 N / mm
2
 

 

Shear stress is zero at the top and bottom fibres. 
 

9. A 2.5 m long simply supported wooden beam, rectangular section of 100 mm wide and 150 

mm deep carries a uniformly distributed load over entire span. If the safe stresses are 12 
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allow 

N/mm
2
 and 1.5 N/mm

2
 in bending and shear respectively, find the safe load that the beam can 

carry. 

Solution: 
 

Let the safe uniformly distributed load = w kN/m. 

Case I: Bending stress consideration 

Maximum bending moment 
wl 

2
 

M 
8 

 
w  2.5

2
 

8 
 0.78125w kN.m 

 

 0.7812510
6
 w N.mm 

 

Moment of resistance of the beam = Maximum bending moment 
 

1 
 bd 2  0.78125 106 w 

6 
 

0.78125 106 w  
1 
12 100 1502 

6 
 

w  5.76 kN / m 
 

Case II: Shear stress consideration 
 

 
Maximum shear force F  

wl 
 

w  2.5 
 1.125w kN 

2 2 
 

 1125w N 
 

Maximum shear stress  
3 
 Average shear stress  

3 
 

F
 

2 2 bd 
 

 
3 


2 

1125w 
 0.1125w N / mm2 

100 150 
 

For safe load, maximum shear stress on the beam shall at best be equal to safe shear stress of the 

material. 

0.1125w  1.5 
 

w  13.33kN 


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The beam can carry safe uniformly distributed load of 5.76 kN/m. 

 
10. A simply supported rectangular timber beam of length l carries a concentrated load of W at a 

distance of l/4 from the left support. The maximum allowable stresses in bending and shear 

are 12 N/mm
2
 and 1.5 N/mm

2
 respectively. If the depth of the beam is 250 mm, find the 

length such that both bending and shear stresses simultaneously reach their maximum 

allowable limits. 

Solution: 

 

 
Consider the equilibrium of the simply supported beam in Fig. 

 

R  l  W  
3l

 
A 

4
 



Maximum shear force, 

RA 

F  R 

 

 
3W 

4 

 

 
3W 

 

A 
4

 

Maximum bending moment, M  R  l 
 

3W 
 

l 
 

3Wl 
    

A 4 4 4 16 
 

Maximum bending stress in the beam,   
M

 
Z 
 

M 
1 

bd 
2
 

6 

 
6M 

bd 
2
 

 

6  
3Wl 

 16 


9Wl 

 

(1) 
bd 

2
 8bd 

2
 

Maximum shear stress,   1.5  Averageshear stress 
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 1.5 


From Eqn. (1) and (2), we have 

 
F 

 
 

bd 

 

 

9Wl 

3W 

 1.5  4 
bd 

 

 
4.5W 

4bd 

 
 

(2) 

 
 

 
 8bd 

2
  

l 

 4.5W d 
 

4bd 
 

l  
 
 d  

12 
 250  2000 mm 

 

 1.5 

 2 m 
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Introduction 

CHAPTER-2 

SLOPE AND DEFLECTION OF BEAMS 

 

When a beam or for that matter any part of a structure is subjected to the action of applied 

loads, it undergoes deformation due to which the axis of the member is deflected from its 

original position. The deflections also occur due to temperature variations and lack-of-fit of 

members. Accurate values for these deflections are sought in many practical cases. The 

deflections of structures are important for ensuring that the designed structure is not 

excessively flexible. The large deformations in the structures can cause damage or cracking 

of non-structural elements. The computation of deflections in structures is also required for 

solving the statically indeterminate structures. 

The deflection of beam depends on four general factors: 

1. Stiffness of the material that the beam is made of, 

2. Dimension of the beam, 

3. Applied loads, and 

4. Support conditions 

 
Elastic curve 

The curve that is formed by plotting the position of the neutral axis of the beam under loading 

along the longitudinal axis is known as the elastic curve. The curve into which the axis of the 

beam is transformed under the given loading is called the elastic curve. The nature of the 

elastic curve depends on the support conditions of the beam and the nature and type of 

loadings. The slope at a given point may be clockwise or anticlockwise measured from the 

original axis of the beam. Figure 1 shows the elastic curves for cantilever and simply 

supported beams. Sagging or positive bending moment produces an elastic curve with 

curvature of concave upward whereas a hogging or negative bending moment gives rise to an 

elastic curve with curvature of concave downward. 

Deflection 

The vertical displacement of a point on elastic curve of a beam with respect to the original 

position of the point on the longitudinal axis of the beam is called the deflection. 

 
Slope 

The angular displacement or rotation of the tangent drawn at a point on the elastic curve of a 

beam with respect to the longitudinal axis of the original beam without loading is known as 

the slope at a given point. 
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(a) Cantilever beam  (b) Simply supported beam 

Figure 1 

 
Importance of slope and deflection 

Accurate values for these beam deflections are sought in many practical cases. The deflection 

of a beam must be limited in order to: (a) provide integrity and stability of structure or 

machine, (b) minimize or prevent brittle-finish materials from cracking The computation of 

deflections at specific points in structures is also required for analyzing a statically 

indeterminate structures. 

Equation of elastic curve 

The following assumptions are made to derive the equation of the elastic curve of a beam. 

Assumptions: 

1. The deflection is very small compared to the length of the beam. 

2. The slope at any point is very small. 

3. The beam deflection due to shearing stresses is negligible, i.e., plane sections remain 

plane after bending. 

4. The values of E and I remain constant along the beam. If they are constant and can be 

expressed as functions of x, then the solution using the equation of elastic curve is 

possible. 

Let us consider an elemental length PQ = ds of the elastic curve of a beam under loading as 

shown in the Figure 1. The tangents drawn at the points P and Q make angles  and   d

with x-axis. Let the coordinates  of P and Q  be x, y and x  dx, y  dy respectively. The 

normals at P and Q meet at C. C denote the centre of curvature and ρ the radius of curvature 

of the part of the elastic curve between P and Q. 

From the geometry of the curve, it is obvious that ds  d

or   
ds

 
d


sass 
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sec
2
  3 2

 1  tan 
2
  3 2

 

and 
dy 

 tan  , 
dx 

dy 
 sin  , and 

ds 

ds 

dx 
 cos

ds 

 
 

  
ds 

 
ds dx 

 dx 

 
  

sec

d




dx 

d dx d d

dx 

 

 
(1) 

Further, tan   
dy

 
dx 

Differentiating with respect to x, one can get 

Asaa sec
2
  

d


dx 
 

d 
2
 y 

dx
2
 

d 



dx 

d 2 y 
 

 

dx 2 

sec2 


(2) 

Substituting the value of 
d 

in Eq.(1), one gets 
dx 

  
sec

3
 

d 
2
 y 

 
 

dx 
2
 

d 
2
 y 

 

 

 
d 

2
 y dy 

 

 

1 
 dx 

2
 

 sec
3
 



	 

dx 
2
  dx 

 
1 



 


d 
2
 y 

 
 

dx 
2
 

 dy 
2
 

3 2

 

1   
dx 

 

    


For real life actual, the slope dy/dx is very small and its square is even smaller and hence the 
 dy 

2
 term  

dx 
 can be neglected as compared to unit. The above expression thus becomes 

 


1 
 

d 2 y 

 dx 2 

 

(3) 
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EI 
d 

2
 y 

dx
2
 
 M 

 

Figure 2 

From theory of pure bending, it is known that 

M 
 

E 
  

 

 

 
From Eq, (3) and (4) we get 

I 

1 
 

M 

 EI 
 

 

 
 

 

(4) 

 

 
(5) 

 

Equation (5) is the governing equation of deflection of beam, also known as equation of 

elastic curve. 

Boundary condition 

The equation of elastic curve or the governing equation for deflection of the beam is a second 

order differential equation; hence we need to know two boundary conditions to find out two 

constants of integration for complete solution of the problem. The boundary conditions 

generally come from the support conditions, where either the slope or the deflection is 

known. Sometimes, due to symmetry of the beam, as in the case of a simply supported beam 

with point load at the centre of the beam or uniformly distributed load throughout the beam, 

an intermediate point representing the point of symmetry may give a boundary condition. 

Figure 3 
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General procedure for computing deflection by integration 

1. Select the interval or intervals of the beam to be used and place a set of coordinate 

axis on the beam with the origin at one end of an interval and then indicate the range 

of values of x in each interval. 

2. List the variable boundary and continuity or matching conditions for each interval. 

3. Express the bending moment M as a function of x for each interval selected and 

equate it to EI d 
2
 y dx 

2
 . 

4. Solve the differential equation from step 3 and evaluate all constants of integration. 

Calculate slope (dy/dx) and deflection (y) at the specific points. 

Numerical Problems 

Problem 1. 

Derive the equation of elastic curve and find the slope and deflection at the free end of the 

cantilever beam shown in the Figure 4. 

 

 

 
Solution. 

Figure 4 

 

Figure 5 
 

Determine the support reactions 

Sum of the vertical forces , V  0, 

 
RA  W 

Sum of the vertical forces , M A   0, M A   W L 

Taking moment about any section between A and B over the entire length of the cantilever, 

we have 

M x  WL  Wx 
 

The equation of the elastic curve may be written as 
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WL 

 

 

 
Integrating with respect to x, we get 

d 
2
 y 

EI 
dx 

2
 
  WL  Wx 

 

EI  EI 
dy 

  WLx 
dx 

 

Integrating again with respect to x, we get 

Wx 
2
 

2 
 C1 

 

(6) 

 
EIy  

WLx 
2
 

2 
 

Wx 
3
 

6 

 
 C1 x  C2 

 
(7) 

The constants integration C1 and C2 may be determined from the boundary conditions. 
 

x  0,   0 and x  0, y  0 

Substituting 

Substituting 

x  0,   0 

 

x  0, y  0 

in Eq. ( ), we get C1  0 

 

in Eq. ( ), we get C2  0 

Substituting the values of C1  0 and C2  0 in Eq. ( ) and Eq. ( ), we get 
 

 

General equation for slope EI  EI 
dy 

  WLx 
dx 

Wx 
2
 

 
 

2 

 

(8) 

 

 
General equation for deflection EIy  WLx 

2
 
 

Wx 
3
 

 
(9) 

 
Slope at free end x  L

2 

 
EIB  WL 

6 

2  
WL

2
 

2 

 

   
WL2

 
B
 2EI 

 

Slope at free end x  L EIyB  WL
3
 
 

Wx 
3
 

2 6 
 

3 

yB   
3EI

 

 
 

Problem 2. 

A cantilever beam of length L carries a uniformly distributed load of w per unit length over 

its entire length. Determine the slope and deflection at the free end of the beam. 
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Figure 6 
 

 

 

 

Solution. 

 

Determine the support reactions 

Sum of the vertical forces , V  0, 

Figure 7 

 

RA  wL 

 

Sum of the vertical forces , M A   0, M A  
w L2 

 
 

2 
 

Taking moment about any section between A and B over the entire length of the cantilever, 

we have 

M x  
wL

2
 

2 

 wx 
2
 

2 

 
 wLx 

 

The equation of the elastic curve may be written as 
 

 

 

 
Integrating with respect to x, we get 

d 
2
 y 

EI 
dx

2
 
  

wL
2
 

2 

 wx 
2
 

2  wLx 

 

EI  EI 
dy 

 
dx 

 

Integrating again with respect to x, we get 

wL
2
 x 



2 

wx 
3
 

6 
 

wLx 
2
 

2 
 C1 

 

(10) 

 
EIy  

wL
2
 x

2
 

4 

 wx 
4
 

24  
wLx 

3
 

6 

 
 C1 x  C2 

 
(11) 

The constants integration C1 and C2 may be determined from the boundary conditions. 

x  0,   0 and x  0, y  0 



25 

 

 

WL 

The constants integration C1 and C2 may be determined from the boundary conditions. 
 

x  0,   0 and x  0, y  0 

Substituting 

Substituting 

x  0,   0 

 

x  0, y  0 

in Eq. ( ), we get C1  0 

 

in Eq. ( ), we get C2  0 

Substituting the values of C1  0 and C2  0 in Eq. ( ) and Eq. ( ), we get 
 

 

General equation for slope EI  EI 
dy

 
dx 

  
wL

2
 x 

2 

 wx 
3


6  
wLx 

2
 

2 

 

(12) 

 

 

General equation for deflection EIy  
wL

2
 x

2
 

4 

 wx 
4


24  
wLx 

3
 

6 

 

(13) 

Slope at free end x  L EIB  
wL

3
 

2 

 wx 
3


6  
wL

3
 

2 
 

   
WL3

 
B
 6EI 

 

Slope at free end x  L EIyB  
wL

4
 

4 

 wx 
4


24  
wL

4
 

6 
 

3 

yB   
8EI

 

 

Problem 3. 

Determine the slope at the end supports and deflection at centre of a prismatic simply 

supported beam of length L carrying a point of W at the mid span. 

 

 

Figure 8 

 

Solution. 
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Figure 9 

The beam is symmetrical, so the reactions at both ends are 
W 

, The bending moment 
2 

equation will change beyond the centre position but because the bending will be symmetrical 

on each side of the centre we need to only to solve for the left hand side. 

Taking moment about any section between the left hand supportA and the centre of the beam, 

we have 

M x   
W 

x 
2 

The equation of the elastic curve may be written as 
 

 

 

 
Integrating with respect to x, we get 

d 
2
 y 

EI 
dx

2
 
  

Wx 

2 

 

EI  EI 
dy 

 
dx 

 

Integrating again with respect to x, we get 

Wx 
2
 

4 
 C1 

 

(14) 

 

EIy  
Wx 

3
 

12 
 C1 x  C2 

 

(15) 

 

The constants integration C1 and C2 may be determined from the boundary conditions. 
 

At A x  0, y  0 (No deflection at roller supported or hinged ends) 

At C x  
L 

,   0 
2 

(Tangent to the elastic curve is horizontal at the centre) 

Substituting 

 

Substituting 

x  
L 

,   0 
2 

 

x  0, y  0 

in Eq. (14 ), we get C1 


in Eq. (15), we get C2  0 

WL
2
 

 
 

16 

 

Substituting the values of C1 
WL

2
 

16 
and C2  0 in Eq. (14) and Eq. (15 ), we get 
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WL 

General equation for slope EI  EI 
2 2 

dy 
  

Wx 
 

WL (16) 
dx 4 16 

 

 

General equation for deflection EIy  
Wx 

3
 

12 
 

WL
2
 x 

16 

 

(17) 

Slope at end A x  0 EIA  W (0)
2
 
 

WL
2
 

4 16 

 

  
WL

2
 

 

 
 L 

A
 16EI 

W  L 
3
 WL

2
  L 

Deflection at the centre  x  2 
EIyC        

  12  2  16  2 


WL
3
 WL

3
 

EIyC   
96  

  
32

 

3 

yC   
48EI 

 

 

 

Problem 4. 

Determine the slope at the end supports and deflection at the centre of a prismatic simply 

supported beam shown in the Figure 10 carrying uniformly distributed load of w per unit 

length over the entire span of the beam. 

 

Figure 10 
 

Solution. 

Figure 11 
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The beam is symmetrical, so the reactions at both ends are 
wL 

, The bending moment 
2 

equation will change beyond the centre position but because the bending will be symmetrical 

on each side of the centre we need to only solve for the left hand side. 

Taking moment about any section between A and B over the entire length of the cantilever, 

we have 

M x 
wLx 

 
 

2 

 wx 
2


2 

 

The equation of the elastic curve may be written as 
 

 

 

 
Integrating with respect to x, we get 

d 
2
 y 

EI 
dx 

2
 
 

wLx 

2 

 wx 
2


2 

 

EI  EI 
dy 


dx 

 

Integrating again with respect to x, we get 

wLx 
2
 

4 

 wx 
3


6  C1 

 

(18) 

 

EIy 
wLx 

2
 

12 

 wx 
4


24  C1 x  C2 

 

(19) 

 

The constants integration C1 and C2 may be determined from the boundary conditions. 
 

At A x  0, y  0 (No deflection at roller supported or hinged ends) 

At C x  
L 

,   0 
2 

(Tangent to the elastic curve is horizontal at the centre) 

Substituting x  
L 

,   0 
2 

in Eq. (18 ), we get 

 
 

wL  L 
2
 

 

 
w  L 

3
 

EI(0)    4 2    C1 

  6  2 


C1  
wL

3
 

16 
 

wL
3
 

48 
 

C1  
wL

3
 

 
 

24 
 

Substituting x  0, y  0 in Eq. (15), we get C2  0 
 

Substituting the values of C1  
wL

3
 

24 
and C2  0 in Eq. (18) and Eq. (19), we get 
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 

 

General equation for slope EI  EI 
dy

 
dx 

 
wLx 

2
 

4 

 wx 
3


6 
 wL

3


24 

 

(20) 

 

 

General equation for deflection EIy 
wLx 

3
 

12 

 wx 
4


24 
wL

3
 
x 

24 

 

(21) 

    
wL 

 2  
 

w 
 3  

 
wL

3

 
 Slope at end A x  0 EI A 0 

4 

 
  

0 
6 24 

 
wL

3
 

 
 

 
 L 

A
 24EI 

wL  L 
3
 

 
  

 
w  L 

4
 wL

3
  L 


Deflection at the centre  x  

 2  EIyC  
12 

 
2 
 

     
24  2  24  2 



EIyC  
wL

4
 

96 
wL

4
 

 
wL

4
 



384 

wL
4
 

 
 

48 

yC   
384EI 

 

Problem 5. 

Determine the slope and deflection of the prismatic simply supported beam under the point 

load. 

 

 

 
Solution. 

Figure 12 
 
 

Figure 13 
 

 

 

Determine the support reactions 

Sum of the vertical forces , V  0, 

 
RA  RB  W 

Sum of the vertical forces , M A 
 0, R   x L  W x 

3L
 

A 
4

 





30 

 

 

4 

4 

R  
3WL 

A 
4

 

Bending moment over the portion AC and CB of the beam may be expressed by two different 

functions and hence the equations for elastic curves. 

L 
For portion A to C (x < ) 

4 
Taking moment about any section between A and C, we have 

M x 
3Wx

 
1 

4
 

The equation of the elastic curve may be written as 

d 
2
 y 

EI 
1
 

dx 
2
 

3Wx 

4 

where y1 x is function which defines the elastic curve for portion AC of the beam. 

Integrating the equation we get, 

EI1 

 
 EI

 dy1
 

dx 

Wx 
3
 

 
 

3Wx 
2
 

8 

 

 
 C1 

 

 

(22 ) 

 

For portion C to B 
 

x  
L 






EIy1 
8 

 C1 x  C2 (23) 

 
 

Taking moment about any section between A and C, we have 

M x 
3Wx 

 W 
 

x  
L 



2  

4  

The equation of the elastic curve may be written as 
 

 W  x  





dx 

2
 4 4 

where y2 x is the function which defines the elastic curve for portion CB of the beam. 

Integrating the equation we get,  
 

EI2 

 


 dy2  
dx 

 
 
Wx 

2
 

8 

 
 WLx 

4 

 

 
 C3 

 

 

(24) 

EIy2 
Wx 

3
 

24 

 WLx 
2
 

8  C3 x  C4 (25) 

Determination of constants of integration from boundary conditions and continuity 

conditions 

Boundary conditions: At support A, x  0, y1  0 and at support B x  L, y2  0 

d 2 y 
EI 2 3Wx  L 

dx 2 

On rearrangement of terms, we get 

4  4 

d 
2
 y 

EI 
2
  

Wx WL  

 



Continuity conditions: There can be no sudden change in the slope and deflection at C which 

31 

 

 



 
requires that at x  

L 
, 

4 
1   2 

 
and y1  y2 

 

Substituting 

 

 

 
Substituting 

x  0, y1  0 in Eq. (23), we get 

 

 
x  L, y2  0 in Eq. (25), we get 

 
 
C2  0 

 

WL
3
 

0 
12 

 C3 L  C4 

 
Substituting x  

L 
,   




into the Eq. (22) and (24) and equating the slopes at the point C, 

4 
1 2 

 

the boundary of two segments AC and CB, we get 

 
3WL

2
 



128 

 

 
C1 




7WL

2
 

128 

 

 
 C3 

 

 

Substituting x  
L 

, 
4 

y1   y2 

 

into the Eq. (23) and (25) and equating the deflections at the 

point C, the boundary of two segments AC and CB, we get 
 

WL
3
 

512 
 

Solving these equations simultaneously, we get 

 C1 L 



4 

11WL
3
 

1536 
 

C3 L 
 C 

4 
4 

C1  
7WL

2
 

128 
, C2  0, C3  

11WL
2
 

128 

WL
3
 

and C4 
384

 

Substituting C1 and C2 into Eq. (22) and (23) and for x  
L

 
4 

EI1 
3Wx 

2
 

8 
 

7WL
2


128 (26) 

EIy1 
Wx 

3
 

8 
 

7WL
2
 x

128 (27) 

Substituting x  
L

 
4 

into Eq. (26) and (27), we get 

WL
2
 3WL

3
 

Macaulay's method 

C   
32EI 

and yC   
256EI 

Double integration method is a convenient and effective way for solving the slope and 

deflection of prismatic beam as long as the bending moment can be represented by a single 

function of M(x). However, it is not always the case. When the loading of the beam is such 

that two or more functions are needed to represent the bending moment over the entire length 





of the beam, as was the case in the previous problem. In such cases, additional constants of 

32 

 

 

L 

4 

4 

4 4 

integration and as many numbers of equations become necessary to express continuity 

conditions at the points of load change-over in addition to the boundary conditions. Thus the 

process becomes lengthy and cumbersome. To overcome this difficulty, British engineer W. 

H. Macaulay proposed an innovative approach of solving such problems by using singularity 

function to express the bending moment over the entire length. 

The execution of Macaulay's method is explained by way of solution to Problem 5. 
 

 

 
Solution. 
Determine the support reactions 

Sum of the vertical forces, V  0, 

Figure 14  

 
RA  RB  W 

Sum of the vertical forces, M B 
 0, R   x L  W x 

3L
 

A 
4

 

R  
3WL 

A 
4

 

Bending moment over the portion AC and CB of the beam may be expressed by two different 

functions as 
M x 

3Wx  
0  x  

L 



1  

4  
M x 

3Wx 
 W 

 
x  

L   L 
 x  L 





2    

4    

wherex is the distance measured from end A. The functions M1x and M 2 x may be 

represented by single expression as 

M x 
3Wx 

 W x 
4 

If we want to compute slope and deflection in the portion CB i.e., when x  
L 

, the brackets 
4 

should be replaced by ordinary parentheses  . Similarly if we want to compute slope 
L 

and deflection when x < 
4 

, the brackets should be replaced by zero. 

Thus the equation of elastic curve over the entire length of the beam may be written as 

d 
2
 y 

EI 
dx 

2
 

3Wx 
 W

 

4 
x  

L
 

4 

Integrate with respect to x considering the bracket as a single variable. 

EI  EI 
dy

 
dx 

 
3Wx 

2
 



8 

2 

x   C1 

 
(28) 

L 

4 

W 

2 



Follow the same rule and integrate again with respect to x. 
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L 

4 

L 

4 

WL 

 

EIy 
Wx 

3
 



8 

3 

x   C1 x  C2 

 

(29) 

 

The constants C1 and C2 may be determined from the boundary conditions. 

At x = 0, y = 0 and at x = L, y = 0 
L 

For x = 0< 
4 

, the brackets are equal to zero, hence C2 = 0 

For x  L  
L 

, the brackets may be replaced by parentheses, 
4 

WL
3
 W  L 

3
 

0  8  L  6 4 
 C1 L 

 
WL

3
 

0 
8 



 
9WL

3


128 



 C1 L

C1  
7WL

2
 

 
 

128 
Substituting the value of C1 in Eq. (28) and C1 and C2 in Eq. (29), we get 

 

General equation for slope EI  EI 
dy

 
dx 

 
3Wx 

2
 



8 

2 

x  
7WL

2
 

128 

 

(30) 

 

General equation for deflection EIy 
Wx 

3
 
 

W 

8 6 
x  

L
 

4 

3
 7WL

2
 

 x 
128 

 

(31) 

The need for additional constants C3 and C4 as in Problem 5 has been eliminated and hence 

need for writing additional equations of continuity for slope deflection. 

Substituting the value of x  
L 

in each of the above equations, we get 
4 

2 

C   
32EI 

and 

3WL
3
 

yC 
256EI 

 

Problem 6. 

Determine the slope and deflection at points B of the beam shown in the Figure. 15. Take E = 

200 GPa and I = 250(10
6
) mm

4
. 

 

 

Figure 15 

Solution. 

W 

6 

W 

2 


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1 

 
 

Determine the support reactions 

Sum of the vertical forces , V  0, 

Figure 16 

 

RA  10 kN 

Sum of the vertical forces , M A   0, M A   10 x 3  30 kN.m 

Considering from the left hand side and taking moment about any section between C and B, 

we have 

M x 10 x  30 10(x  3) 
 

Do not simplify. On simplification the moment becomes zero between B and C which is 

obvious. 

Thus the equation of elastic curve over the entire length of the beam may be written as 
 

d 
2
 y 

EI 
dx 

2
 
 10 x  30 10 x  3 

 

Integrate with respect to x considering the bracket as a single variable. 

 
EI  EI 

dy 
 5 x 2  30x  5 x  3 2  C 

 

 

 
 

(32) 

dx 1 

Follow the same rule and integrate again with respect to x. 

EIy  
5
 

3 
x3  15x 2  x  3 3  C x  C (33) 

The constants C1 and C2 may be determined from the boundary conditions. 

At x  0,   0 and x  0, y  0 

 
For x = 0< 3 m, the brackets are equal to zero, hence from Eq. (32) C1 = 0 and from Eq. (33) 

C2 = 0 
 

Substituting the values of C1 and C2 in Eq. (32) and (33), we get 

 
General equation for slope EI  EI 

dy 
 5 x 2  30x  5 x  3 2 

dx 

 
(34) 

General equation for deflection EIy  
5
 

3 
x3  15x 2  x  3 3 (35) 

Substituting the value of x  6 in each of the above equations, we get 

5 

3 

5 

3 

2 
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B 






From Eq. (34) the slope, EI  5 (6)2  30 x 6  56  32
 

 

   
45

 
B EI 

 
  






45 kN.m

2
 

 
200 x10 



6 kN 

m
2 

x 250 x 10
6

 m
4
 



B   0.0009 radian 
 

 
From Eq. (35), the deflection 

 
EIy   

5  
(6)3  15(6)2  

5 
6  33 

  

B 3 3 

EIyB  360  540  45 

y   
225 

B EI 

225 kN.m
3
 

yB   



 200 x 10 


6 kN 

m
2 

x 250 x 10
6

 m
4
 



yB   0.0045 m   4.5mm 
 

For the equation of elastic curve between A and C, neglecting the bracketed term in Eq. (35), 

we get 

EIy  
5
 

3 

 

x 3  15x 2 which is cubic 

 

For the equation of elastic curve between C and B, considering the bracketed term in Eq. (35) 

and replacing with parentheses, we get 

EIy  
5

 
3 

 

EIy  
5
 

3 

x3  15x 2  
5 

(x  3)3 
3 

 

x3  15x 2  
5 

(x3  9x 2  27x  27) 
3 

 

EIy  45x  45which is linear 

 
The elastic curve of the beam with the salient points is shown in the figure 

B 
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2 


 

Problem 7. 
 

The cantilevered beam shown is subjected to a uniformly distributed load w per unit length. 

Determine the slope and deflection at point C and B. Also draw the elastic curve. EI is 

constant. 

Figure 17 

 

 

 

 

Solution. 
 

 

Figure 18 

Determine the support reactions 

Sum of the vertical forces , V  0, R  
wL 

A 
2
 

wL 3L 3wL2 

Sum of the vertical forces , M A   0, M A      
2  

x  
4  
  

8
 

Considering from the left hand side and taking moment about any section between C and B, 

we have 

M x  
3wL2 

8 

 wL
2 

x 
 w  

x 



L 2 

2 
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w 

2 

L 

2 

L 

2 

w 

6 

w 

24 

x 

x 

Following Macaulay‟s method, the equation of elastic curve over the entire length of the 

beam may be written as 

d 2 y 
EI 

dx2 
  

3wL2 

8 
 

wL 
x  x 

2 
 

Integrate with respect to x considering the bracket as a single variable. 

 

EI  EI 
dy 

 
dx 

3wL2 x 



8 

wLx 2 



4 

3 

x   C1 

 

(36) 

Follow the same rule and integrate again with respect to x. 
 

 

EIy  
3wL2 x2 

16 

 wLx3 



12 

4 

x   C1 x  C2 

 

(37) 

The constants C1 and C2 may be determined from the boundary conditions. 
 

At x  0,   0 and x  0 m, y  0 
 

L 
For x = 0< 

2 
, the brackets are equal to zero, hence from Eq. (36) C1 = 0 and from Eq. (37) C2 

= 0 
 

Substituting the values of C1 and C2 in Eq. (36) and (37), we get 
 

 

General equation for slope EI  EI 
dy

 
dx 

  
3wL2 x 




8 

wLx 2 
 



4 

 

(38) 

 
 

General equation for deflection EIy  
3wL2 x2 

16 

 wLx3 
 



12 

 

(39) 

Substituting the value ofx< 
L 

in each of the above equations and equating the bracketed term 
2 

as zero, we get  

 
3wL2 L 

 

 
wL  L 2 

From Eq. (37) the slope at C, EIC    
8

 2 
  

4  
 

2 



 


3wL3 wL3 

EIC     
16 

 
16

 

 

   
wL3

 

C 8EI 

L 

2 

w 

6 

w 

24 

L 

2 

L 

2 

2 

3 

4 
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6 


 

3wL2  L 2 wL  L 3 
From Eq. (39) the deflection at C, EIy        

16    2  12  2 


EIy  3wL4 

 
wL4 

64 96 
 

7wL4 
yC 

192EI 
 

Substituting the value ofx< L in Eq. (38) and (39) and replacing the brackets by parentheses, 

we get 

 
From Eq. (38) the slope at B, 

 
EIB   

3wL2 L 
 

wL 

8 4 

 
L2 

w  
L 



L 3 





EIB  
3wL3 

8 

 wL3
4  

wL3
48 

 

   
7wL3 

B 48EI 

 
3wL2 L2 

 

 
 

wLL3 w  L 4 
From Eq. (39) the deflection at B, EIyB    

16
    L  12 24 2 

 
EIyB  


3wL
4 

16 

 

 
wL4 
12 

 

 
wL4
384 

41wL4 
yB 

384EI 
 

Figure 

Problem 8. 

Determine the maximum deflection, the slope and deflection at points C of the beam shown 

in the figure. Also, draw the elastic curve of the beam. Take E = 200 GPa and I = 60(10
6
) 

mm
4
. 

 

2 

 
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Figure 19 
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Solution. 

 

 

 
Determine the support reactions 

Sum of the vertical forces, V  0, 

Sum of the vertical forces,  M B    0, 

Figure 20  

 
RA  RB  8 

RA x 12  8 x 3 

RA  2 kN 

Considering from the left hand side and taking moment about any section between C and B, 

we have 

M x 2x  8(x  9) 
 

Following Macaulay‟s method, the equation of elastic curve over the entire length of the 

beam may be written as 

d 
2
 y 

EI 
dx 

2
 

 

 2 x  8 x  9 

 

Integrate with respect to x considering the bracket as a single variable. 
 

EI  EI 
dy 


dx 

x 2  4 x  9 2  C 

 

(40) 

 

Follow the same rule and integrate again with respect to x. 
 

EIy  
1 

x3 
3 

x  9 3  C x  C 

 

(41) 

 

The constants C1 and C2 may be determined from the boundary conditions. 
 

At x  0, y  0 and x  12 m, y  0 
 

For x = 0< 9 m, the brackets are equal to zero, hence from Eq. (41) C2 = 0 

and for x = 12 > 6, from Eq. (41) 

EI (0)  
1
123  

4 
(12  9)3  C 

  

x12 

3 3 1 

4 

3 

1 

2 
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45 






36 

12C   
1
123  

4 
(12  9)3 

  

1 3 3 
 

C1   45 

Substituting the values of C1 and C2 in Eq. (40) and (41), we get 

General equation for slope 

General equation for deflection 

EI  EI 
dy 


dx 

EIy  
1 

x3 
3 

x 2  4 x  9 2  45 

 
x  9 3  45x 

 
(42) 

 
(43) 

Substituting the value ofx< 4 in each of the above equations, we get 
 

From Eq. (42) the slope, EIB  (9)
2
  45 

 

B   
EI

 

 
 





36 kN.m
2
 

 
200 x10 



6 kN 

m
2 

x 60 x 10
6

 m
4
 



B  0.003radian 
 

 

From Eq. (43), the deflection EIyB 
 

1 
(9)3  45 x 9 

3 
 

y   
162 

B
 EI 

 

162 kN.m
3
 

yB   



 200 x 10 


6 kN 

m
2 

x 60 x 10
6

 m
4
 



yB   0.0135 m  13.5mm 
 

For maximum deflection, the slope must be zero. 
 

Let us assume that the maximum slope would occur in the portion AC, equating the slope 

equation in (42) without the bracketed term to zero 

x
2
  45  0 assa 

 

x    6.708 m 
 

Neglecting the – ve sign, the deflection would occur at x  6.708 m 

4 

3 

B 
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

Maximum deflection, EIymax 

 

EIymax 

 
1 

(6.708)3  45 x 6.708 
3 

 

 
1 

(6.708)3  45 x 6.708 
3 

 

y
max 

  
200.246 

EI 
 

200.246 kN.m
3
 

ymax   



 200 x 10 


6 kN 

m
2 

x 60 x 10
6

 m
4
 



ymax   0.01668 m  16.68 mm 
 

 

 
 

 

 

 

 

 

Problem 9. 

Determine the slope and deflection at points Cof the beam shown in the Figure. 15. Take E = 

200 GPa and I = 250(10
6
) mm

4
. 

 

Figure 21 

 

 

 

 

Solution. 
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1 

 

 

Determine the support reactions 

Sum of the vertical forces, V  0, 

 
RA  RB  1.5 x 6  9 

Sum of the vertical forces, M B 
 0, R x12  1.5 x 6 x 

6
 

A 
2
 

RA  2.25 kN 

Considering from the left hand side and taking moment about any section between C and B, 

we have 

M x 2.5x  1.5(x  6) 
x  6


2 

 2.5x  0.75(x  6)2 

Following Macaulay‟s method, the equation of elastic curve over the entire length of the 

beam may be written as 

d 
2
 y 

EI 
dx 

2
 

 

 2.5 x  0.75 x  6 
2
 

 

Integrate with respect to x considering the bracket as a single variable. 

 
EI  EI 

dy 
 1.25 x 2  0.25 x  6 

3 
 C ( 

 

dx 1 

Follow the same rule and integrate again with respect to x. 

EIy  
1.25 

x3 
3 

x  6 4  C x  C (41) 

The constants C1 and C2 may be determined from the boundary conditions. 

At x  0, y  0 and x  12 m, y  0 

For x = 0< 6 m, the brackets are equal to zero, hence from Eq. ( ) C2 = 0 

andx = 12 > 6 from Eq. ( ) the brackets being replaced with parentheses 

EI (0)  
1.25  

x  123  
0.25 

12  64  
 12C 

  

3 4 1 

0.25 

4 
2 
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12C1   720  81 
 

C   
639 

 53.25 
1 

12
 

 

Substituting the values of C1 and C2 in Eq. (40) and (41), we get 

EI  EI 
dy 

 1.25 x 2  0.25 x  6 3  53.25 
dx 

 

EIy  
1.25 

x3 
3 

x  6  4  53.25x 

 

Slope and deflection of commonly loaded simply supported beam 
 

Beam load and support Deflection 

 

 

 
WL

3
 

At centre max  
48EI

 

 

 

 
23WL

3
 

At centre max  
648EI

 

 

 

 

 
 

WL
3
 

At centre max  
20.1EI

 

0.25 

4 



45 

 

 

 

 

 

 
 

5WL
4
 

At centre max  
384EI

 

 

Principle of superimposition 

For linear response structures, the structural responses such as slope and deflection due to 

several loads acting simultaneously may be obtained by superposing the effects of individual 

loads. This is called principle of superposition. 

The principle of superposition is valid under the following conditions 
 

1. Hooke's law holds for the material 

2. the deflections and rotations are small 

3. the presence of the deflection does not alter the actions of applied loads 
 

These requirements ensure that the differential equations of the deflection curve are linear. A 

very useful application of the principle of superposition is to determine the deflection of 

statically indeterminate beams. In the present discourse we will restrict our study only to 

propped cantilever which falls within the scope of the syllabus. 

 

 
MOMENT-AREA METHOD 

 

 

Introduction 

In this section we will discuss on the evaluation of slope and deflection of beams employing 

moment-area method. Unlike previous section, beams with non-uniform EI or flexural 

rigidity can be dealt with. Slope and deflection of non-prismatic beams with continuously 

varying moment of inertia can be conveniently determined. 

 

Moment- Area Method 

The moment-area method is one of the most effective methods for obtaining the bending 

displacement in beams and frames. For problems involving several changes in loading, the 

area-moment method is usually much faster than the double-integration method; 

consequently, it is widely used in practice. In this method, the area of the bending moment 

diagrams is utilized for computing the slope and or deflections at particular points along the 



 

 

Stresses in shafts due to torsion 
 

Concept of torsion:- The body is said to be in torsion, if they are subjected to twisting moments.Due to 
torsion the body is subjected to shear stress which is maximum at outer layer and minimum at the neutral 
axis through centre. 
Basic assumptions of pure torsion:- 
1. The shaft is homogeneous and isotropic. 
2. The twist along the shaft is uniform. 
3. Normal cross section of the shaft which were plane & circular before twist remains same after twist. 
4. All diameter of normal cross section which were straight before twist remains straight with their 
magnitudes unchanged after twist. 
Shear Stress developed in the shaft:- 
Let us consider a shaft of length “l” subjected to torsion. 
Let ɵ = the angle of twist 
Let R = radius of shaft. 
Let C = shear modulus of shaft 
Let ⱷ = angle of shear 
Let ح = shear stress 
Let T = twisting moment or Torque transmitted by shaft 
Let J = Polar Moment of Inertia 

For solid circular shaft 𝐽 = 
𝜋𝑑4 

32 

For hollow circular shaft 

 
Then we get ح = 

𝐶.ɵ 
= 

T
 

𝐽 = 
𝜋(𝐷4− 𝑑4) 

 

32 

𝑅 𝑙 𝐽 
 

The above equation is known as Equation of Torsion. This is similar to Bending equation which we know 
earlier. 
Torsional Rigidity = C.J , which is defined as:- It is the twisting moment required to produce unit rotation 
in a shaft of one unit length. 

Power Transmitted by a shaft P, 𝑃 = 
2𝜋𝑁𝑇 

in Watts 
60 

Where N = Speed or Rotation of shaft in RPM 
T = Torque transmitted by shaft in (N.M) 

 
Numericals 
1. A circular shaft of 50 mm dia is required to transmit torque from one shaft to other. Find the safe torque 

the shaft can transmit, if the shear stress is not to exceed 40 MPa. (0.982 KN.M) 

2. A solid shaft is to transmit a Torque of 10 KN.M. If the shear stress is not to exceed 45 MPa, find the 

minimum dia of the shaft. (104.2 mm) 

3. A hollow shaft of external & internal dia of 80 mm & 50 mm respectively is required to transmit torque 

from one shaft to other. Find the safe torque it can transmit if the shear stress is not to exceed 40 MPa. 

(3.40 KN.M) 

4. Calculate the maximum torque that a shaft of 125 mm dia can transmit, if the maximum angle of twist is 

10 for a length of 1.5 m. Take shear modulus of the shaft as 70 GPa. (19.01 KN.M) 

5. A circular shaft of dia 60 mm is running at a speed of 150 RPM.If the shear stress is not to exceed 50 

MPa, find the power that can be transmitted by the shaft. (33.3 KW) 

6. A solid circular shaft of 100 mm dia is transmitting 120 KW at 150 RPM. Find the intensity of shear stress 

in the shaft. (38.91 MPa) 

7. A hollow shaft is to transmit 200 KW at 80 RPM. If the shear stress is not to exceed 60 MPa and internal 

dia of the shaft is 0.6 times the external dia, find out the diameters of the shaft. (132.75 mm , 79.65 mm) 

XXXXX ------ XXXXX 


