C.V. RAMAN POLYTECHNIC, BHUBANESWAR

DEPARTMENT OF CIVIL ENGINEERING

LECTURE NOTE ON

ESTIMATION & COST EVALUATION- I (Th.4)

SEM-3RD

Prepared by

SUMITRA PARIDA

(Asst. Prof. in Civil Engineering)

INDEX

S.No.	Topic	Pag	ge No	•
Lec	ctureNotes.in			
01.	Introduction to the subject	1	: = :	3
02.	Measurement of Materials & Works	4	<u>-</u> 2	12
03.	Types of Estimates	13		21
04.	Detail & Abstract Estimates of Buildings	22		55
05.	Analysis of Rates	56		73
06. —	Estimation of Quantities of Steel & RCC Elements	74	-	80
07.	Earth Work Calculations	81	-	95
	LectureNote	es.		
08.	Detailed Estimates	96	•	108
09.	Appendex	109	-	115

INTRODUCTION TO THE SUBJECT

1.1 DEFINITION OF ESTIMATING AND COSTING

Estimating is the technique of calculating or Computing the various quantities and the expected Expenditure to be incurred on a particular work or project.

In case the funds avilable are less than the estimated cost the work is done in part or by reducing it or specifications are altered, the following requirement are necessary for preparing an estimate.

- Drawings like plan, elevation and sections of important points.
- Detailed specifications about workmenship & properties of materials etc. b)
- Standard schedule of rates of the current year.

1.2 NEED FOR ESTIMATION AND COSTING

- Estimate give an idea of the cost of the work and hence its feasibility can be determined i..e whether the project could be taken up with in the funds available or not.
- Estimate gives an idea of time required for the completion of the work. 2.
- Estimate is required to invite the tenders and Quotations and to arange 3. contract.
- Estimate is also required to control the expenditure during the execution of work. CLUICIN OLC 5.111
- 5. Estimate decides whether the proposed plan matches the funds available or not.

1.3 PROCEDURE OF ESTIMATING OR METHOD OF ESTIMATING.

Estimating involves the following operations

- Preparing detailed Estimate. 1.
- Calculating the rate of each unit of work 2.
- 3. Preparing abstract of estimate

1.4 DATA REQUIRED TO PREPARE AN ESTIMATE

- Drawings i.e.plans, elevations, sections etc. 1.
- 2. Specifications.
- 3. Rates.

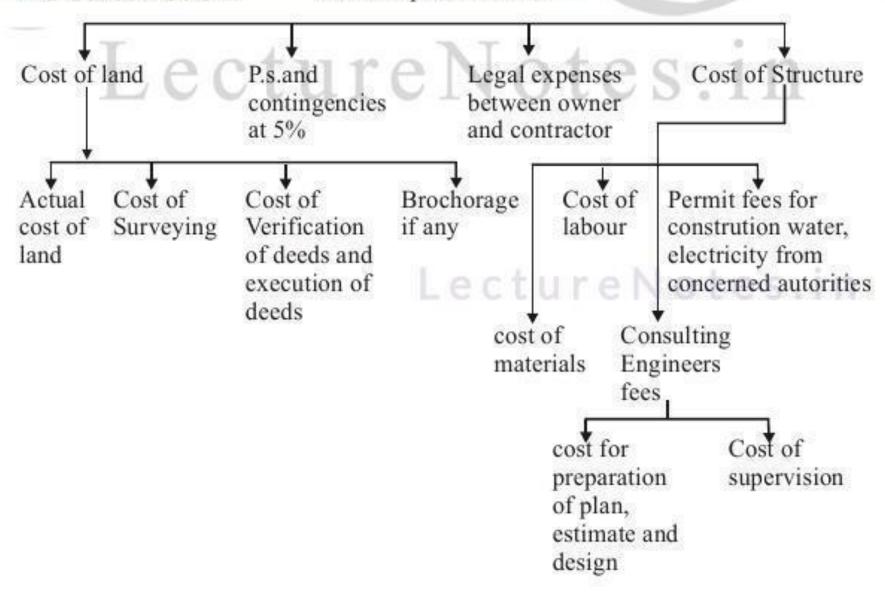
1.4.1 DRAWINGS

If the drawings are not clear and without complete dimensions the preparation of estimation become very difficult. So, It is very essential before preparing an estimate.

1.4.2. SPECIFICATIONS

- General Specifications: This gives the nature, quality, class and work and materials in general terms to be used in various parts of wok. It helps no form a general idea of building.
- b) Detailed Specifications: These gives the detailed description of the various items of work laying down the Quantities and qualities of materials, their proportions, the method of preparation workmanship and execution of work.

1.4.3. RATES:


For preparing the estimate the unit rates of each item of work are required.

- For arriving at the unit rates of each item.
- The rates of various materials to be used in the construction.
- 3. The cost of transport materials.
- The wages of labour, skilled or unskilled of masons, carpenters, Mazdoor, etc.,

1.5 COMPLETE ESTIMATE:

Most of people think that the estimate of a structure includes cost of land, cost of materials and labour, But many other direct and indirect costs included and is shown below.

The Complete Estimate

1.6 LUMPSUM:

While preparing an estimate, it is not possible to workout in detail in case of petty items. Items other than civil engineering such items are called lumpsum items or simply L.S.Items.

The following are some of L.S. Items in the estimate.

- 1. Water supply and sanitary arrangements.
- Electrical installations like meter, motor, etc.,
- Architectural features.
- Contingencies and unforeseen items.

Ingeneral, certain percentage on the cost of estimation is alloted for the above L.S.Items

Even if subestimates prepared or at the end of execution of work, the actual cost should not exceed the L.S.amounts provided in the main estimate.

1.7 WORK CHARGED ESTABLISHMENT:

During the construction of a project considerable number of skilled supervisors, work assistance, watch men etc., are employed on temporary basis. The salaries of these persons are drawn from the L.S. amount alloted towards the work charged establishment, that is, establishment which is charged directly to work, an L.S. amount of 1½ to 2% of the estimated cost is provided towards the work charged establishment.

Lecture Notes.in

Short Answer Questions

- 1. State the requirements of an estimate?
- 2. Briefly Explain need for estimation?
- 3. What is work charged establishment?

MEASUREMENT OF MATERIALS AND WORKS

2.1 UNITS OF MEASUREMENTS:

The units of measurements are mainly categorised for their nature, shape and size and for making payments to the contractor and also. The principle of units of measurements normally consists the following:

- Single units work like doors, windows, trusses etc., are expressed in numbers.
- Works consists linear measurements involve length like cornice, fencing, hand rail, bands of specified width etc., are expressed in running metres (RM)
- Works consists areal surface measurements involve area like plastering, white washing, partitions of specified thickness etc., are expressed in square meters (m²)
- d) Works consists cubical contents which involve volume like earth work, cement concrete, Masonry etc are expressed in Cubic metres.

[BASED ON IS 1200 REVISED]

S1.	Particulas of item	Units of	Units of
No.	ecture	Measurement	payment
I	Earth work:	1000	. 1.11
	 Earth work in Excavation 	cum	Per%cum
	Earthwork in fillingin founda- tion trenches	cum	Per%cum
	Earth work in filling in plinth	cum	Per%cum
II	Concrete:	ctureNo	tes.ir
	 Lime concretre in foundation 	cum	percum
	2. Cement concrete in Lintels	cum	percum
	3. R.C.C.in slab	cum	percum
	 C.C. or R.C.C. Chujja, Sun- shade 	cum	percum
	 L.C. in roof terracing (thickness specified) 	sqm	persqm

5		Estima	tion and Costing
	Cement concrete bed	cum	per cum
	R.C. Sunshade (Specified	cum	1rm
	Width & Hight		
III	Damp ProofCource (D.P.C)		
	(Thickness should be men-	sqm	persqm
	tioned)		
IV	Brick work: tes.in		
	 Brickwork in foundation 	cum	percum
	Brick work in plinth	cum	percum
	Brick work in super struc-	cum	percum
	ture		
	Thin partition walls	sqm	percum
	Brick work in arches	cum	percum
	Reinforced brick work	cum	percum
	(R.B.Work)		
V	Stone Work:		
	Stone masonry	cum	percum
VI	Wood work:		
	Door sand windows frames	cum	percum
	or chowkhats, rafters		
	beams	:5	
	Shutters of doors and win-	sqm	persqm
	dows (thickness specified)	.in	
	Doors and windows fittings	Number	per number
	(like hinges, tower bolts,	_	
2012/05/2012	sliding bolts, handles)	lotes	111
VII	Steel work	10000	
	Steel reinforcement bars	Quintal	per quintal
	etc in R.C.C. and		
	R.B.work. quintal	2 2 2	9 725
	2. Bending, binding of steel	Quintal	per quintal
	Reinforcement	cturen	otes.in
	3. Rivets, bolts, & nuts, An-	Quintal	per quintal
	chor bolts, Lewis bolts,		
	Holding down bolts.		12 SE
	4. Iron hold fasts	Quintal	per quintal
	5. Iron railing (height and	Quintal	per quintal
	types specified)	respicor un	150, 00 4 00 00 00 00 00 00
<u></u>	6. Iron grills	sqm	per sqm

VIII	Roofing		
	1. R.C.C. and R.B.Slab roof		
	(excluding steel)	cum	per cum
	2. L.C. roof over and inclusive		
	of tiles or brick or stone slab	sqm	per sqm
.ec	etc (thickness specified)		
	3. Centering and shuttering	sqm	per sqm
	form work		
	A.C.Sheet roofing	sqm	per sqm
IX	Plastering, points&finishing	5-1470	
	1. Plastering-Cement or Lime	sqm	per sqm
	Mortar (thickness and pro-	3020	
	portion specified)		
	2. Pointing	sqm	per sqm
	3. White washing, colour	sqm	per sqm
	washing, cement wash		
	(number of coats specified)		
	4. Distempering (number of	sqm	per sqm
	coats specified)		
	Painting, varnishing (number	sqm	per sqm
	of coats specified)		
X	Flooring	TO VICE	
	1. 25mm cement concrete	sqm	per sqm
	over 75mm lime concrete	ote	gin
	floor (including L.C.)	010	2.111
	2. 25mm or 40mm C.C. floor	sqm	per sqm
	Doors and window sills	sqm	per sqm
	(C.C. or cement mortar		
	plain)	4	Matacin
XI	Rain water pipe /Plain pipe	1RM	per RM
XII	Steel wooden trusses	1No	per 1No
XIII	Glass pannels(supply)	sqm	per sqm
XIV	Fixing of glass panels or	No	per no.
	cleaning		

2.2 RULES FOR MEASUREMENT:

The rules for measurement of each item are invaribly described in IS-1200. However some of the general rules are listed below.

- Measurement shall be made for finished item of work and description of each item shall include materials, transport, labour, fabrication tools and plant and all types of overheads for finishing the work in required shape, size and specification.
- In booking, the order shall be in sequence of length, breadth and height or thickness.
- All works shall be measured subject to the following tolerances.
 - Linear measurement shall be measured to the nearest 0.01m.
 - ii) Areas shall be measured to the nearest 0.01 sq.m
 - iii) Cubic contents shall be worked-out to the nearest 0.01 cum
- Same type of work under different conditions and nature shall be measured separately under separate items.
- The bill of quantities shall fully describe the materials, proportions, workmanships and accurately represent the work to be executed.
- In case of masonary (stone or brick) or structural concrete, the categories shall be measured separately and the heights shall be described:
 - a) from foundation to plinth level
 - b) from plinth level to First floor level
 - c) from Fist floor to Second floor level and so on.

2.3 METHODS OF TAKING OUT QUANTITIES:

The quantities like earth work, foundation concrete, brickwork in plinth and super structure etc., canbe workout by any of following two methods:

- a) Long wall short wall method
- b) Centre line method.
- c) Partly centre line and short wall method.

a) Long wall-short wall method:

In this method, the wall along the length of room is considered to be long wall while the wall perpendicular to long wall is said to be short wall. To get the

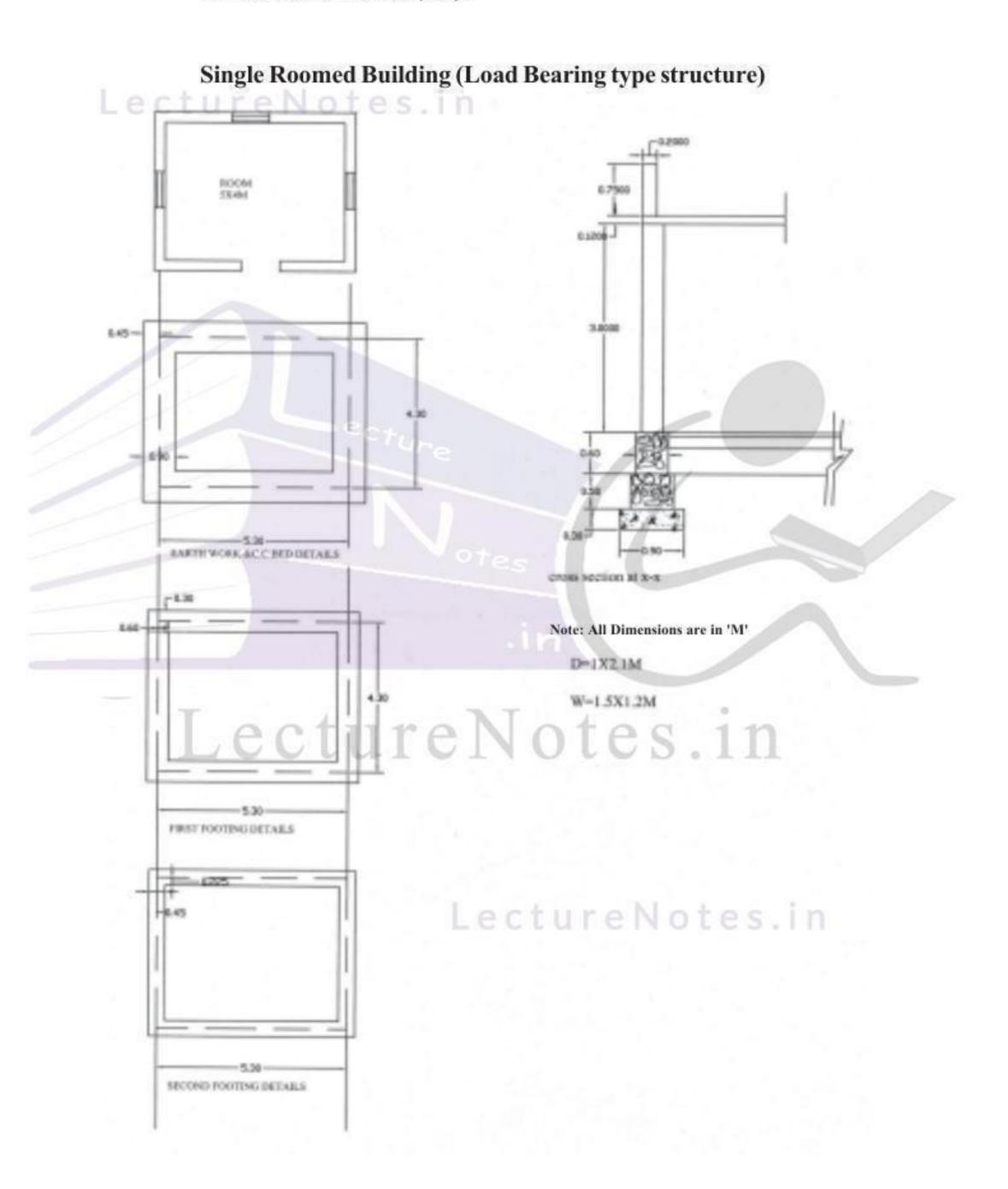
Measurement of Materials and Works

length of long wall or short wall, calculate first the centre line lengths of individual walls. Then the length of long wall, (out to out) may be calculated after adding half breadth at each end to its centre line length. Thus the length of short wall measured into in and may be found by deducting half breadth from its centre line length at each end. The length of long wall usually decreases from earth work to brick work in super structure while the short wall increases. These lengths are multiplied by breadth and depth to get quantities.

b) Centre line method:

This method is suitable for walls of similar cross sections. Here the total centre line length is multiplied by breadth and depth of respective item to get the total quantity at a time. When cross walls or partitions or verandah walls join with mainall, the centre line length gets reduced by half of breadth for each junction, such junction or joints are studied caefully while calculating total centre line length. The estimates prepared by this method are most accurate and quick.

c) Partly centre line and partly cross wall method:


This method is adopted when external (i.e., alround the building) wall is of one thickness and the internal walls having different thicknesses. In such cases, centre line method is applied to external walls and long wall-short wall method is used to internal walls. This method suits for different thicknesses walls and diffeent level of foundations. Because of this reason, all Engineering departments are practicing this method.

LectureNotes.in

Lecture Notes.in

9

P.B.-1: From the Drawing given below determine (a) Earth work excavation (b) CC (1:5:10) Bed (c) R.R.Masonry in C.M. (1:6) (d) Brick Work in C.M.(1:6).

Measurement of Materials and Works Long wall - Short wall Method

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
1.	Earth Work excavati	on					
0	for foundation	-0	. 1	-			
. c	a) Long walls	2	6.2	0.9	1.4	15.264	L=5.3+.45+.45=6.2
	/						D=0.3+0.5+0.6=1.4
	b) Short walls	2	3.4	0.9	1.4	8.568	L=4.3-0.45-0.45=3.4
		57.01	-200000	1000		24.192	m ³
2.	C.C.(1:4:8) bed for						
12.300	foundation						
	a) Long walls	2	6.2	0.9	0.3	3.348	
	b) Shortwalls	2	3.4	0.9	0.3	1.836	
		SPERIN	200		Total	5.184	m ³
3.	R.R.Masonry in CM		ure.		1000		
	(1:6) for						/
	a) Footings						
	i) Long walls	2	5.9	0.6	0.5	3.54	L=5.3+0.3+0.3=5.9
	ii) Short walls	2	3.7	0.6	0.5	53334	L=4.3-0.3-0.3=3.7
	-5/		17071	500,000	Total		m³
	b) Basement				alla)		
	i) Long walls	2	5.75	0.45	0.6	3.105	L=5.3+0.225+0.225=5.75
	ii) Short walls	2	0.394,35,95	0.45	57,015000	2.079	L=4.3-0.225-0.225=3.85
	Lect	u i		1	Total	5.184	$m^3 \circ 1 11$
	Total R.R. Masonry	for f	oting	and	Basen	nent	
	50 00 00 00 00 00 00 00 00 00 00 00 00 0	-22	= 5.7	6+5.	184 =	10.94 m	3
4.	Brick masonary with	CM	esta).		11737/339		
	(1:6) for super structure		114				y y w
	a) Long Wall	2	5.6	0.30	3.00	10.08	L=5.3+0.15+0.15=5.6
	b) Short walls	2	4.0	0.30	3.00	7.20	L=4.3-0.15-0.15=4.0
					Total	17.28	m ³

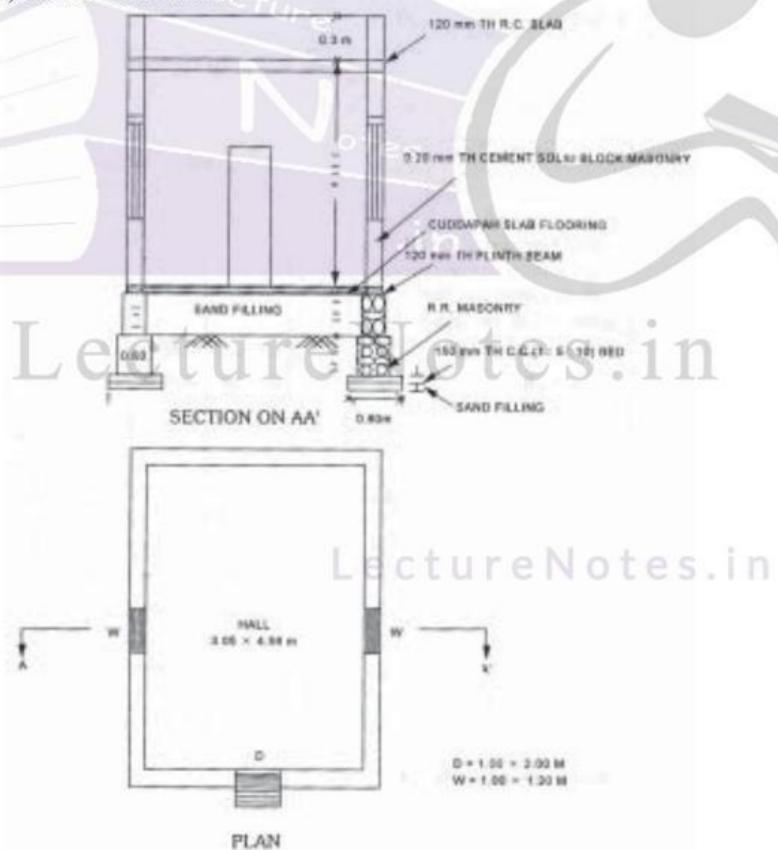
Centre Line Method

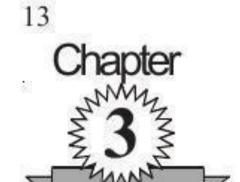
S.No	. Particulars of Items	No	L	В	Н	Q	Explanation
1.	Earth Work excavati	on		100 CO CO CO		24.102	1
e c	for foundation 53	e s	19.2	0.9	1.4	24.192	m ³ L=2(5.3+4.3)=19.2
2.	C.C.(1:4:8) bed for foundation	1	19.2	0.9	0.3	5.184	m ³
3.	R.R.Masonry in CM (1:6) for						
	a) Footings	1	19.2	0.6	0.5	5.76	
/	b) Basement	1	19.2	0.45	0.6	5.184	
		ctu	re		Total	10.944	m ³
4.	Brick masany with	A					
	CM(1:6) for super structu	ire 1	19.2	0.3	0.3	17.28	m ³

in

LectureNotes.in

LectureNotes.in


EXERCISE


I. Short Answer Questions

- List the difference between centre line method and long wall-short wall method of taking out measurements.
- 2. What are the rules to be followed while taking the mesurements?
- Mension the units for the following items.
 - a) flooring b) R.R.Masonry c) Plastering for pointing d) Damp proof course e) R.C. sunshade (Sepcified width and thickness)

II. Essay type questions

- From the Drawing given below determine (a) Earth work excavation (b)
 CC (1:5:10) Bed (c) R.R.Masonry in C.M. (1:6) (d) Brick Work in C.M.(1:6). by
 - (a) longwall short wall method
 - (b) Centre line Method

TYPES OF ESTIMATES

3.1 DETAILED ESTIMATE:

The preparation of detailed estimate consists of working out quantities of various items of work and then determine the cost of each item. This is prepared in two stages.

i) Details of measurements and calculation of quantities:

The complete work is divided into various items of work such as earth work concreting, brick work, R.C.C. Plastering etc., The details of measurements are taken from drawings and entered in respective columns of prescribed proforma, the quantities are calculated by multiplying the values that are in numbers column to Depth column as shown below:

Details of measurements form

S.No.	Description of Item	No	Length (L) m	Breadth (B) m	Depth/ Height (D/H)m	Quantity	Explanatory Notes
	Lec	<i>t</i> 1	1 1 6			0	
		LL	110	T) D .	LII
				Lec	ture	Not	es.in

ii) Abstract of Estimated Cost:

The cost of each item of work is worked out from the quantities that already computed in the detals measurement form at workable rate. But the total cost is worked out in the prescribed form is known as abstract of estimated form. 4%of estimated Cost is allowed for Petty Supervision, contingencies and Unforeseen items.

ABSTRACT OF ESTIMATE FORM

Item No.	Description/ Particulars	Quantity	Unit	Rate	Per (Unit)	Amount
.ect	ureNot	es.in				

The detailed estimate should accompained with

- i) Report
- ii) Specification
- iii) Drawings (plans, elevation, sections)
- iv) Design charts and calculations
- v) Standard schedule of rates.

3.1.1.Factors to be consistered While Preparing Detailed Estimate:

- i) Quantity and transportation of materials: For bigger project, the requirement of materials is more, such bulk volume of materials will be purchased and transported definitely at cheaper rate.
- Location of site: The site of work is selected, such that it should reduce damage or in transit during loading, unloading, stocking of mateirals.
- iii) Local labour charges: The skill, suitability and wages of local laboures are consideed while preparing the detailed estimate.

3.2 DATA:

The process of working out the cost or rate per unit of each item is called as Data. In preparation of Data, the rates of materials and labour are obtained from current standard scheduled of rates and while the quantities of materials and labour required for one unit of item are taken from Standard Data Book (S.D.B)

3.2.1 Fixing of Rate per Unit of an Item:

The rate per unit of an item includes the following:

- Quantity of materials & cost: The requirement of materials are taken strictly in accordance with standard data book(S.D.B). The cost of these includes first cost, freight, insurance and transportation charges.
- ii) Cost of labour: The exact number of labourers required for unit of work and the multiplied by the wages/day to get of labour for unit item work.
- iii) Cost of equipment (T&P): Some works need special type of equipment, tools and plant. In such case, an amount of 1 to 2% of estimated cost is provided.
- iv) Overhead charges: To meet expenses of office rent, depreciation of equipment salaries of staff postage, lighting an amount of 4% of estimate cost is allocated.

3.3 METHODS OF PREPARATION OF APPROXIMATE ESTIMATE:

Preliminary or approximate estimate is required for studies of various aspects of work of project and for its administrative approval. It can decide, in case of commercial projects, whether the net income earned justifies the amount invested or not. The approximate estimate is prepared from the practical knowledge and cost of similar works. The estimate is accompanied by a report duely explaining necessity and utility of the project and with a site or layout plan. A percentage 5 to 10% is allowed for contingencies. The following are the methods used for preparation of approximate estimates.

- a) Plinth area method 1 C 1 C S . 111
- b) Cubical contents methods
- c) Unit base method.
- a) Plinth area method: The cost of construction is determined by multiplying plinth area with plinth area rate. The area is obtained by multiplying length and breadth (outer dimensions of building). In fixing the plinth area rate, carefull observation and necessary enquiries are made in respect of quality and quantity aspect of materials and labour, type of foundation, hight of building, roof, wood work, fixtures, number of storeys etc.,

As per IS 3861-1966, the following areas include while calculating the plinth area of building.

16

- a) Area of walls at floor level.
- Internal shafts of sanitary installations not exceeding 2.0m², lifts, airconditionsing ducts etc.,
- c) Area of barsati at terrace level:
 - Barsati means any covered space open on one side constructed on one side constructed on terraced roof which is used as shelter during rainy season.
- d) Porches of non cantilever type.

Areas which are not to include

- a) Area of lofts.
- b) Unenclosed balconies.
- c) Architectural bands, cornices etc.,
- d) Domes, towers projecting above terrace level.
- e) Box louvers and vertical sunbreakers.
- b) Cubical Contents Method: This method is generally used for multistoreyed buildings. It is more accurate that the other two methods viz., plinth area method and unit base method. The cost of a structure is calculated approximately as the total cubical contents (Volume of buildings) multiplied by Local Cubic Rate. The volume of building is obtained by Length x breadth x depth or height. The length and breadth are measured out to out of walls excluding the plinth off set.

The cost of string course, cornice, carbelling etc., is neglected.

The cost of building=volume of buildings x rate/unit volume.

c) Unit Base Method: According to this method the cost of structure is determined by multiplying the total number of units with unit rate of each item. In case schools and colleges, the unit considered to be as 'one student' and in case of hospital, the unit is 'one bed'. the unit rate is calculated by dividing the actual expenditure incured or cost of similar building in the nearby locality by the number of units.

Problems on Plinth Area Method

Example 3.1: Prepare an approximate estimate of building project with total plinth area of all building is 800 sqm. and from following data.

- i) Plinth area rate Rs. 4500 per sqm
- ii) Cost of water supply @71/2% of cost of building.
- iii) Cost of Sanitary and Electrical installations each @ 7½% of cost of building.
- iv) Cost of architectural features @1% of building cost.
- v) Cost of roads and lawns @5% of building cost.
- vi) Cost of P.S. and contingencies @4% of building cost.

Determine the total cost of building project.

Solution:

Data given:

Plinth area = 800m^2 .

Plinth area rate = Rs. 4500 per Sqm.

 \therefore Cost of building = 800 x 4500 = Rs. 36,00,000=00

Add the cost of the water supply charges @71/2%

$$=\frac{36,00,000\times7.5}{100}=2,70,000=00$$

Add the Cost of Sanitary and electrical installation @ 15%

$$= \frac{36,00,000 \times 15}{100} = 5,40,000 = 00$$

Add the cost of archetectural features @1%

$$\frac{1}{100} = \frac{36,00,000 \times 1}{100} = \frac{36,0000 \times 1}{36,000} = 00$$

Add the cost of Roads Lawns @
$$5\% = \frac{36,00,000 \times 5}{100} = 1,80,000 = 00$$

Add the Cost of P.S. and contingencies @ 4%

$$=\frac{36,00,000\times4}{100}$$
 = 1,44,000 = 00

Assume Add supervision charges 8% on overall cost

$$=47,70,000 \times \frac{8}{100} = 3,81,600 = 00$$

Types of Estimates

18

Example 3.2: The plinth area of an appartment is 500 sqm. Determine the total cost of building from the following data:

- a) Rate of construction = Rs.1230/--per m³.
- b) The height of appartment = 16.25 m
- c) Water Supply, Sanitary and Electrical installations each at 6% of building cost.
 - d) Architectural appearance @ 1% of building cost.
 - e) Unforeseen item @2% of Building cost.
 - f) P.S. and contingencies @4% of building.

Solution:

a) The Cost of building = cubic content x cubic rate

$$= 500 \times 16.25 \times 1230 = \text{Rs. } 99,93,750/-$$

b) Provision for water supply, sanitary and

Electrical installations water supply and sanitation each @ 6%

$$= \frac{99,93,750 \times 18}{100} = \text{Rs.}17,98,875/-$$

i.e total percent = $3 \times 6 = 18\%$ building cost

c) Architectural appearance @1%=
$$\frac{99,93,750 \times 1}{100}$$
 = Rs. 99,937/-

d) Unforeseen items @2%

$$= Rs. 1,99,875/-$$

e) P.S. and contingenies @4%

$$= Rs. 3,99,750/-$$

Total

= Rs.1,24,92,187/-

Sundries

7,813/-

Total cost of the building project = Grand Total = Rs.1,25,00,000/-

Example 3.3: The plinth area and plinth area rate of a residential building are 100 sqm and Rs. 5000/- respectively. Determine the total cost of building assuming suitable provisions.

Solution:

Cost of building =
$$100 \times 5000$$
 = Rs.5,00,000

Cost of water supply and

sanitary fittings @15% =
$$\frac{5,00,000 \times 15}{100}$$
 = Rs. 75,000

Cost of Electrification @
$$7\frac{1}{2}\% = \frac{5,00,000 \times 7.5}{100}$$
 = Rs. 37,500

Cost of Roads & Lawns @5%=
$$\frac{5,00,000 \times 5}{100}$$
 = Rs. 25,000

Cost of P.S.& contingencies@4%=
$$\frac{5,00,000 \times 4}{100}$$
 = Rs. 20,000

Total Cost Rs. 6,57,500/-

Example 3.4: Prepare an approximate Extimate of a proposed building from the follwoing?

Plinth area of the building = 226 sqm.

Cost of the structure = 2500 per sqm.

Water supply and sanitary arangements = $12\frac{1}{2}\%$

Electrification = 7%

Fluctuation of rates = 5%

petty supervision charges = 3%

sol: Cost of Building =
$$-226 \times 2500$$
 = Rs.5,65,000

Water supply & Sanitory arrangements @ 121/2 %

$$= \frac{5,65,000 \times 12.5}{100} = \text{Rs. } 70,000$$

Electrification @7% =
$$\frac{5,65,000 \times 7}{100}$$
 = Rs. 39,550

Types of Estimates

20

Fluctuation of rates 5% =
$$\frac{5,65,000 \times 5}{100}$$
 = Rs. 28,250

Pettysupervision charges
$$3\% = \frac{5,65,000 \times 3}{100}$$
 = Rs.16,950

Total Cost Rs. = 7,19,750.00

Problem on Cubical content Method:

Example 3.5: Prepare the rough estimate for a proposed commertial comples for a municipal corporation for the following data.

Plinth Area = 500m²/floor

Ht of each storey = 3.5 m

No. of storeys = G+2

Cubical content rate = Rs. 1000/m3

Provided for a following as a pecentage of structured cost

a) water supply & Sanitary arrangement -8%

b) Electrification -6%

c) Fluctuation of rates - 5%

d) Contractors profit - 10%

e) Petty supervision & contingencies - 3%

Sol: Cubical content = No.of storeys (Plinth Area x height of each storey)

$$=3(500x3.5)=5250m^3$$

Structural cost = Cubical content x cubical content rate

 $= 5250 \times 1000 = 52.5 \text{ Lakhs}$

other provisons:-

a) Water supply and sanitation $= 52.5 \times 8/100 = \text{Rs.4.2 Lakhs}$

b) Electrification = $52.5 \times 6/100$ = Rs.3.15 lakhs

c) fluctuation of rates = $52.5 \times 5/100$ = Rs.2.625

Total = Rs. 9.975 Lakhs

Structural cost = Rs. 52.500 Lakhs

Total = Rs.62.475 Lakhs

d) P.S./& contingencies = 62.475 x 3/100 = Rs.1.874 Lakhs

e) Contractors Profit = $62.475 \times 10/100$ = Rs.6.247 Lakhs

Total Cost = Rs.70.596 Lakhs

Problems on Unit Base Method:

Example 3.6: Prepare an approximate estimate or rough cost estimate of a hospital building for 50 beds. The cost of construction altogether for each bed is Rs. 60,000/-. Determine the total cost of hospital building.

Solution:

No. of beds = 50

Cost of construction = Rs. 60,000/-

Total Cost of Hospital building = 50x 60,000 = Rs. 30,00,000/-

Example 3.7: To prepare the rough cost estimate of a hostel building which accommodate 150 students. The cost of construction including all provisions is Rs. 15,000/- per student. Determine total cost of building.

Solution:

No. of students= 150

Cost of construction including all L.S. provisions = Rs. 15,000/-

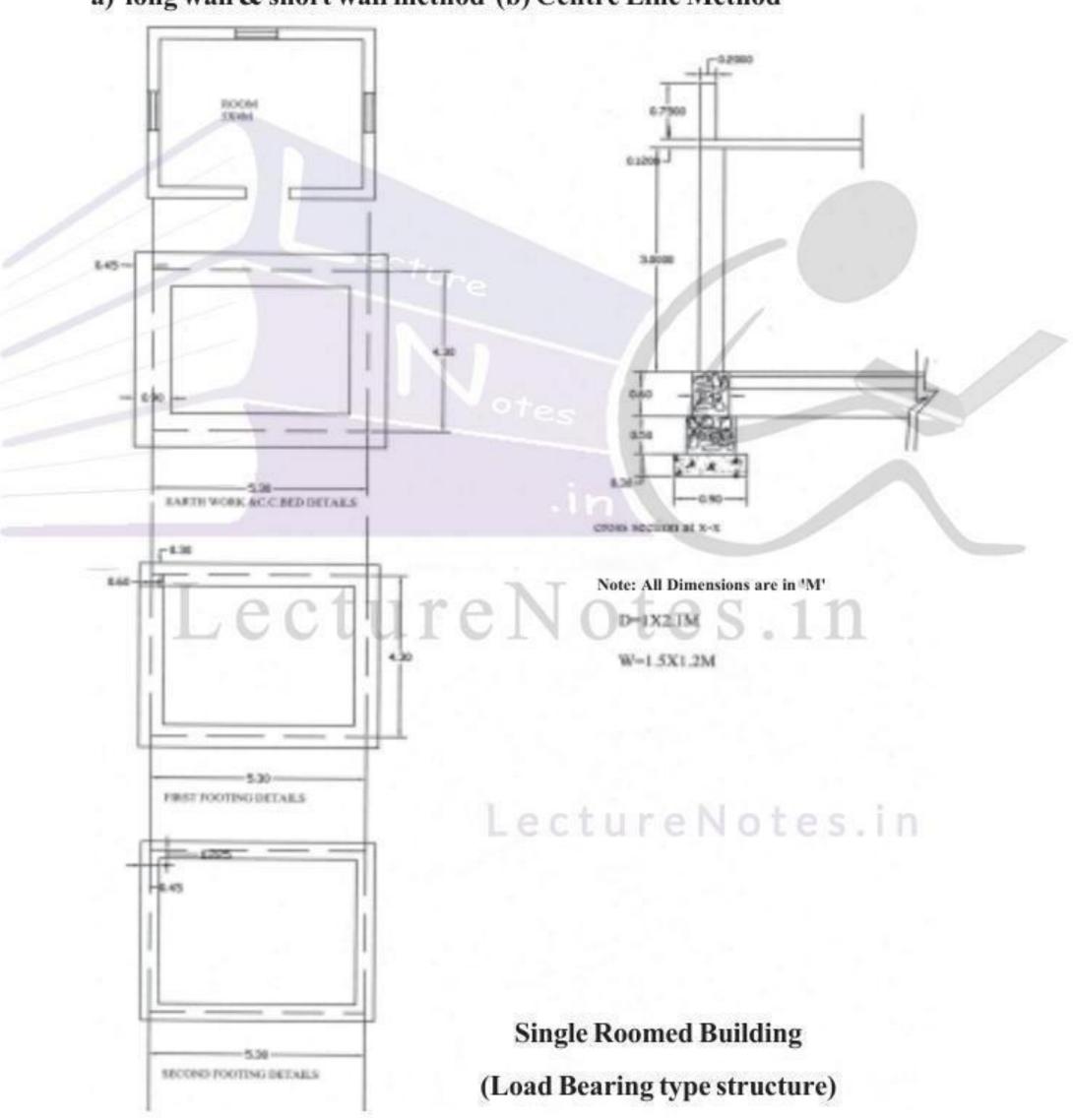
Total Cost of hostel building = 150 x 15000 = Rs. 22,50,000/-

(Rupees twenty two lakhs, fifty thousands only)

EXERCISE

I. SHORT ANSWER QUESTIONS:

- List the factors to be consider while preparing detailed estimate and explain breifly?
- 2. What are the differences between plinth area method and Unit base method?
- List the requirements of data preparation.


II ESSAYTYPE QUESTIONS:

- Prepare the approximate cost of building project (group HOuseing)
 - i) No. of houses = 150
 - ii) Plinth area of each dwelling = 600m²
 - iii) Plinth area rate = Rs. $5,000/\text{-per m}^2$
 - iv) Cost of water supply & sanitary arrangements @121/2%
 - v) Electrification at 7½% of cost of builing.
 - vi Cost of roads & Lawns @5%
 - vii) Cost of P.S.& contingencies @4%
- Prepare a rough cost estimate of a cinema theatre which accommodate 1700 seats. The cost of construction including all provisions is Rs.6000/- per seat.
- What are the methods of preparation of approximate estimates and explain briefly.

Example 1: From the given figure below calculate the detailed and abstract estimate for the single roomed building (Load bearing type structure) by

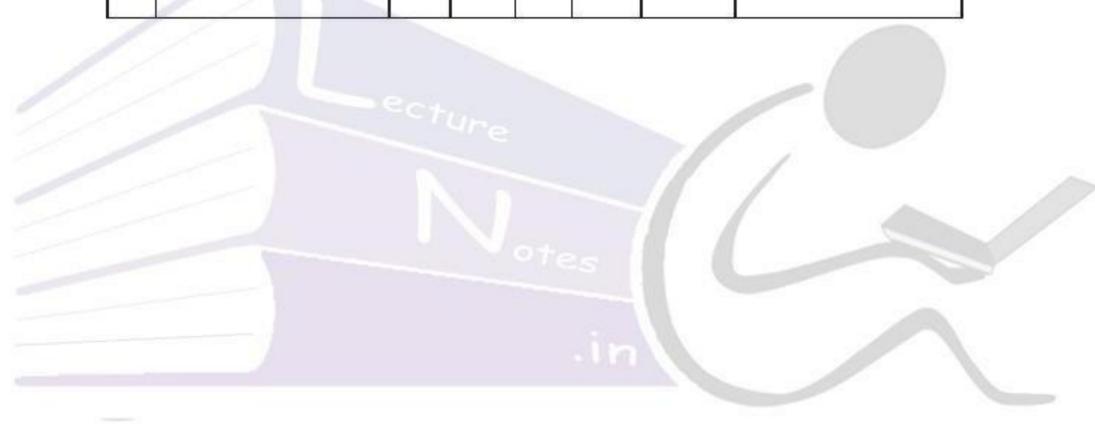
a) long wall & short wall method (b) Centre Line Method

a) Long wall - Short Method

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
1.	Earth Work excavati	on					
	for foundation						
	a) Long walls	2	6.2	0.9	1.4	15.264	L=5.3+.45+.45=6.2
	turenot	e s	al f				D=0.3+0.5+0.6=1.4
1	b) Short walls	2	3.4	0.9	1.4	8.568	L=4.3-0.45-0.45=3.4
					Total	24.192	m³
2.	C.C.(1:4:8) bed for						
32082	foundation						
	a) Long walls	2	6.2	0.9	0.3	3.348	
	b) Short walls	2	3.4	0.9	0.3	1.836	
					Total	5.184	m ³
3.	R.R.Masonry in CM	E-10					
	(1:6) for	99 87	re				
	a) Footings						/
	i) Long walls	2	5.9	0.6	0.5	3.54	L=5.3+0.3+0.3=5.9
	ii) Short walls	2	3.7	0.6	0.5	2.22	L=4.3-0.3-0.3=3.7
					Total	5.76	m^3
	b) Basement						
	i) Long walls	2	5.75	0.45	0.6	3.105	L=5.3+0.225+0.225=5.75
	ii) Short walls	2	3.85	0.45	0.6	2.079	L=4.3-0.225-0.225=3.85
	Tanta	7 -0		N	Total	5.184	\mathbf{m}^3
	Total R.R. Masonry	for fo	oting	s and	Baser	nent	5.111
	2.53			6	Accessors to	10.94 m	3
4.	Brick masonary with	CM	5335		-30000		
	(1:6) for super structure		26 - 23	200250	l see	10.00	T 53.015.015.5
	a) Long Walls	2	Start Donneller	0.30	V.000000000000000000000000000000000000	10.08	L=5.3+0.15+0.15=5.6
	b) Shortwalls	2	4.0	0.30	3.00	7.20	L=4.3-0.15-0.15=4.0
	c) for parapetwall						
	5.6						
	4.6						
	a) Long Walls	2	5.6	0.2	0.75	1.68	
5	b) Shortwalls	2	4.4		0.75	1.32	
			87		Total		m³

S.No	. Particulars of Items	No	. L	В	Н	Q	Explanation
	Deductions for openings						
	a)Doors	1	1.0	0.3	2.1	0.63	
	b) Windows	3	1.5	0.3	1.2	1.62	
	ctureNo	te	s.i	n	Total	(-)2.25	m ³
	Net Brick Masonry	=	= 20.2	8 - 2.	25 =	18.03m	6 8
5.	R.C.C. (1:2:4) for						
	a)Roofslab	1	5.6	4.6	0.12	3.090	
	b) Lintels over	55		0.00000	230		
	i) Doors	1	1.2	0.3	0.15	0.054	
	ii) Windows	3	1.5	0.3	0.15	0.202	
	c) Beams						
	i) Long beams	2	5.6	0.3	0.3	1.008	
	ii) short beams	2	4.0	0.3	0.3	0.720	
	With the same of t	300			Total	5.074	m^3
6.	Sandfilling for	R				7///	
	basement	1	4.85	3.85	0.48	8.96	L=5.0-0.075-0.075=4.85
7	C.C.(1:4:8) for	1	4.85	3.85	0.1	1.86	B=4.0-0.075-0.075=3.8
	flooring				9		
8	Flooring with Mosaic	1	5.0	4.0		20.0	m²
	tiles				علاه	111	
9	Plastering with CM						
	(1:6)for super struct	ire	00	7	Ta	40	0 110
	Inside CU	u.	LC	T	V	LE	5.111
	Forwalls	1	18.0		3.0	54.0	L=2(5.0+4.0)=18.0
	Out side						
	Forwalls	1	20.4		3.87	61.2	L=2(5.6+4.6)=20.4
	Basement outside	1	21.6		0.6	12.96	H=3.0+0.12+0.75=3.87
	Parapet wall			Le	ctı	ıre l	(upto parapet wall)
	a) Inside	1	18.8		0.75	14.1	
	b)top	1	19.6	0.2		3.92	
	Deductions for opeinings				Total	146.18	m²
	Doors	1x2	1.0		2.1	4.2	
	Windows	3x2	1.5		1.2	10.8	
	sate of congressions are also made to the	0.600.000000		Opens P	100	15.0	m ²
	Net Plastering =	146.	18 - 15	5.0	-	131.18	m ²

25	(2)		93		100	Estin	iation and Costing
S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
10 11 e (Plastering for Ceiling with CM(1:5) White Washing with two coats with Janatha cemer	1 It e s	5.0	4.0	222	20.0	m²
	Same as quantity of plastering for walls and ceiling					151.18	(=131.18+20=151.18)
12.	Colour washing with two coats						
	Same as quantity of plastering for walls and ceiling	c tu	re			151.18	(=131.18+20)151.18)
13	Supply & Fixing of best country wood for a) Doors b) Windows	1 3	J	te:		1 No. 3No.	
_14	Painting with ready mixed synthetic enamil paits with two coats over primary of for new wood for	h 14	e	N	0	te	s.in
	a)Doors	21/4x1			2.1	4.725	
	b) Windows	2½x3	1.5	9.0	1.2 Total	12.15 16.875	m² otes.in
15	Petty supervision and contingencies at 4% and rounding off.						


b) Centre Line Method

		L	В	Н	Q	Explanation
Earth Work exevation	n			8		
forfoundation	1	19.2	0.9	1.4	24.192	m³
C ± u 53 1 0 43	te	s.i	n		8	L=2(5.3+4.3)=19.2
C.C.(1:4:8) bed for foundation	1	19.2	0.9	0.3	5.184	m ³
R.R.Masonry in CM						
	1	19.2	0.6	0.5	5.76	
	1	The state of the	800-80000	1000000	5.184	
	2C1	Una		Total	10.944	
Prior mesoner with					7/	
	uro 1	10.2	0.2	2.0	17.28	m³
For parapet wall	1			Control	The second second	
	1	1.0	0.3	2.1	0.63	
b) Windows	3	1.5	0.3	1.2	1.62	
				Total	(-)2.25	m ³
Net Brick Mason	y =	17.28	+3.0-	2.25 =	18.03	m^3 111
R.C.C. (1:2:4) for			10000		65. 3=0	
a) roof slab	1	5.6	4.6	0.12	3.090	
10061050350-000028502803280	1	1.2	0.3	0.15	0.054	
70					10.000000000000000000000000000000000000	Notes.in
	1					
C) CCMIIIS	100	17.2	0718280		2007/03/2007/2007	m ³
Sandfilling for				CC W.C 77539.	50.500000.000	
basement	1	4.85	3.85	0.48	8.96	L=5.0-0.075-0.075=4.85
C.C.(1:4:8) for	1	4.85	3.85	0.1	1.86	B=4.0-0.075-0.075=3.85
flooring	500		100000000000000000000000000000000000000	STATE OF THE STATE		and the state of t
	for foundation 5.3 C.C.(1:4:8) bed for foundation R.R.Masonry in CM (1:6) for a) Footings b) Basement Brick masonry with CM(1:6) for super structor For parapet wall Deductions for openings a) Doors b) Windows Net Brick Mason R.C.C. (1:2:4) for a) roof slab b) Lintels over i) Doors ii) Windows c) beams Sandfilling for basement C.C.(1:4:8) for	for foundation 5.3 C.C.(1:4:8) bed for foundation R.R.Masonry in CM (1:6) for a) Footings b) Basement 1 Brick masonry with CM(1:6) for super structure 1 For parapet wall Deductions for openings a) Doors b) Windows 1 R.C.C. (1:2:4) for a) roof slab b) Lintels over i) Doors ii) Windows 1 Sandfilling for basement C.C.(1:4:8) for 1	for foundation 5.3	for foundation 5.3 C.C.(1:4:8) bed for foundation R.R.Masonry in CM (1:6) for a) Footings b) Basement 1 19.2 0.45 Brick masonry with CM(1:6) for super structure 1 19.2 0.45 Brick masonry with CM(1:6) for super structure 1 19.2 0.3 1.5 0.3 Net Brick Masony = 17.28 +3.0- R.C.C. (1:2:4) for a) roof slab 1 5.6 4.6 b) Lintels over i) Doors 1 1.2 0.3 ii) Windows 3 1.5 0.3 C) beams 1 19.2 1.3 Sandfilling for basement 1 4.85 3.85 C.C.(1:4:8) for 1 4.85 3.85	for foundation 5.3 43	for foundation 5.3

41			3			Loui	iuuon unu Cosung
8.	flooring with Mosaic	1	5.0	4.0	1819	20.0	
9	Plastering with CM						
5	(1:6)for super struct	ıre					
	Inside	50	-				
e	Forwalls	e ₁ s	18.0		3.0	54.0	
	Out side	-25	erania ar				
	Forwalls	1	20.4		3.87	61.2	
	Basement outside	1	21.6		0.6	12.96	
	Parapet wall						
	a) Inside	1	18.8	7.7	0.75	14.1	
	b)top	1	19.6	0.2		3.92	
	Deductions for opeining				Total	146.18	m ²
	Doors	1x2	1.0	7.7	2.1	4.2	L=5.0-0.075-0.075=4.85
	Windows	3x2	1.5		1.2	10.8	B=4.0-0.075-0.075=3.85
			re .			15.0	m ²
	Net Plastering =	146	.18-15	=		131.18	m²
10	Plastering for Ceiling with CM(1:5)	1	5.0	4.0		20.0	m ²
11	White Washing with two coats with Janatha cemer	ıt			in		
	Same as quantity of					151.18	m²
	plastering for walls and ceiling	11	·e	N	0	te	(131.18+20=151.18)
12.	Colour washing with two coats						
	Same as quantity of		L	e	tu	reN	otes.in
	plastering for walls and ceiling					151.18	m ²
13	Supply & Fixing of best						
1210003	country wood for						
	a)Doors	1				1 No.	
	b) Windows	3				3No.	

Detail & Abstract Estimates of Buildings

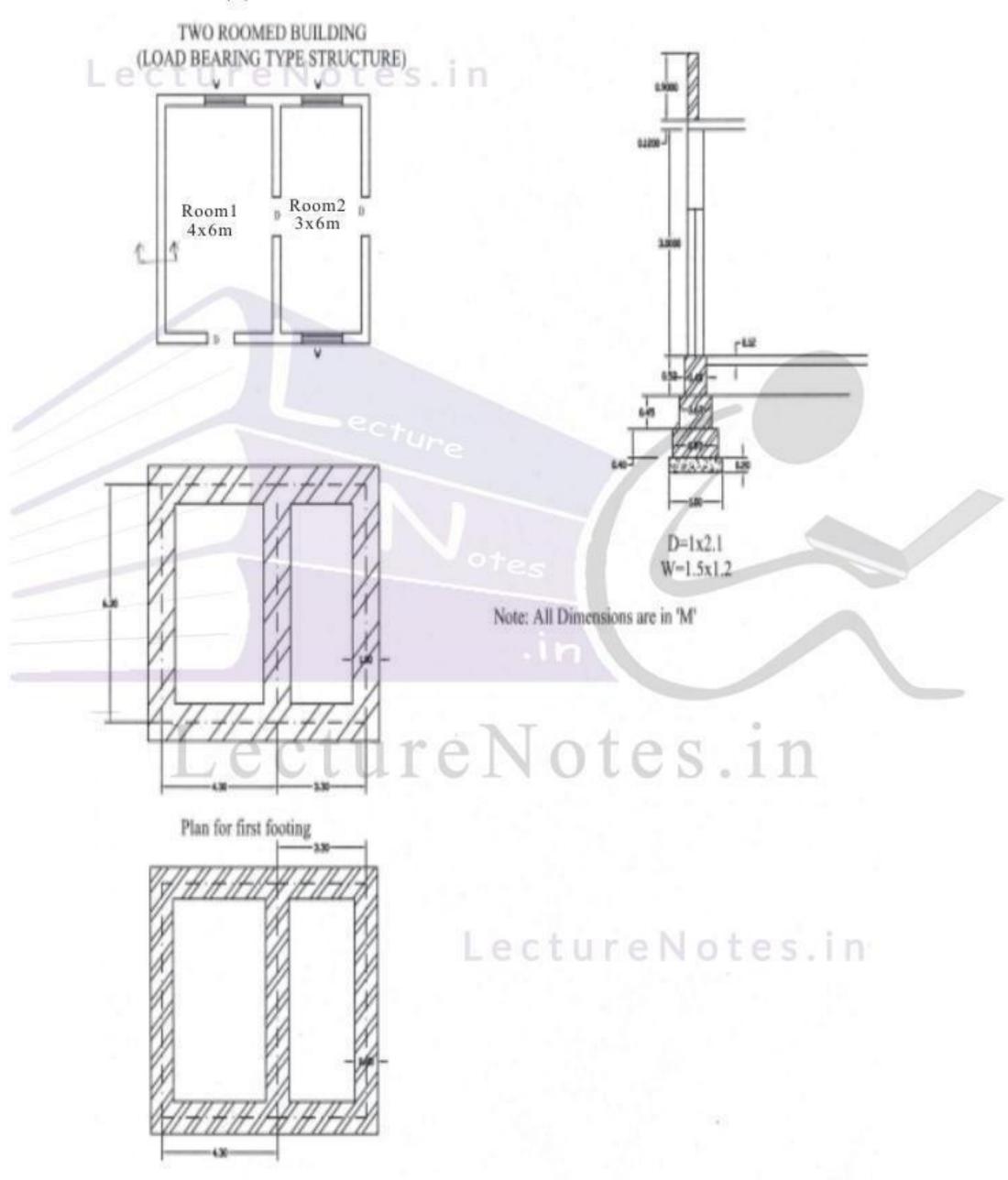
S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
14 _ e	Painting with ready mixed synthetic enamil paints we two coats over primary confornew wood for	rith oat		n	2.1	4.725	
	a) Doors b) Windows	2½x1 2½x3	1.0 1.5		1.2 Total	12.15 16.875	m²
15	Petty supervision and contingencies at 4% and rounding off.						

LectureNotes.in

LectureNotes.in

28

29 Estimation and Costing
Abstract estimate of single roomed building (load bearing structure)


S.No.	Description of item	Quantity	Unit	Rate	Per	Amount
1.	Earth work excaation	24.192	m ³	465	10m ³	1125.00
2.	Cement concrete(1:4:8)	5.184	m^3	4545	$1 m^3$	8009.30
3.	RR.masonry in C.M.(1:5)	10.94	m^3	1391	m^3	15217.50
4.	Sand filling in basement	8.96	m^3	195.20	$10m^3$	175.00
5.	Brick masonry in country bricks of standard size in CM(1:8)	18.03	m³	2291	m ³	41306.73
6.	R.C.C. (1:2:4) for lintels, beams etc.	1.984	m³	6030	m³	11963.52
7.	R.C.C.(1:2:4) for slabs,	3.09	m^3	6030	m^3	18633.00
8.	Cement concrete (1:5:10) for flooring	1.86	m ³	1452	m ³	2700.72
9.	Supplying and fixing of country wood for doors.	2.1	m ²	1650	m ²	3465.00
10.	Supplying and fixing of country wood for windows and ventilators.	5.4	m ²	2300	m ²	12420.00
11	Plastering to all exposed surfaces of brick work and basement with C.M (1:5)	151.18	m ²	582	10m ²	8798.70
12	White washing with best shell lime	151.18	m ²	116	10m ²	1753.68
_13	Flooring with spartek tiles set in C.M (1:3)	20	m ²	4230	10m ²	8460.00
14	Painting with ready mixed enamel paint	16.875	m ²	335	10m ² Total	565.31 134593.46
15	Povision for water supply and sanitary arangements @12.5%				8,501	16824.18
16	Provision for electrification @7.5%	Lec	tu	reN	ote	10094.50
17	Povision for architectural appearance @2%					2691.86
18	Provision for unforeseen items 2%					2691.86
19	Provision for P.s.and contingencies @4%					5383.73

Grand Total Rs. 172279.65

Detail & Abstract Estimates of Buildings

30

Example :2 :-From the given figure below calculate the details and abstract estimate for the double roomed building (Load bearing type structure) by a) long wall & short wall method (b) Centre Line Method

Estimation and Costing

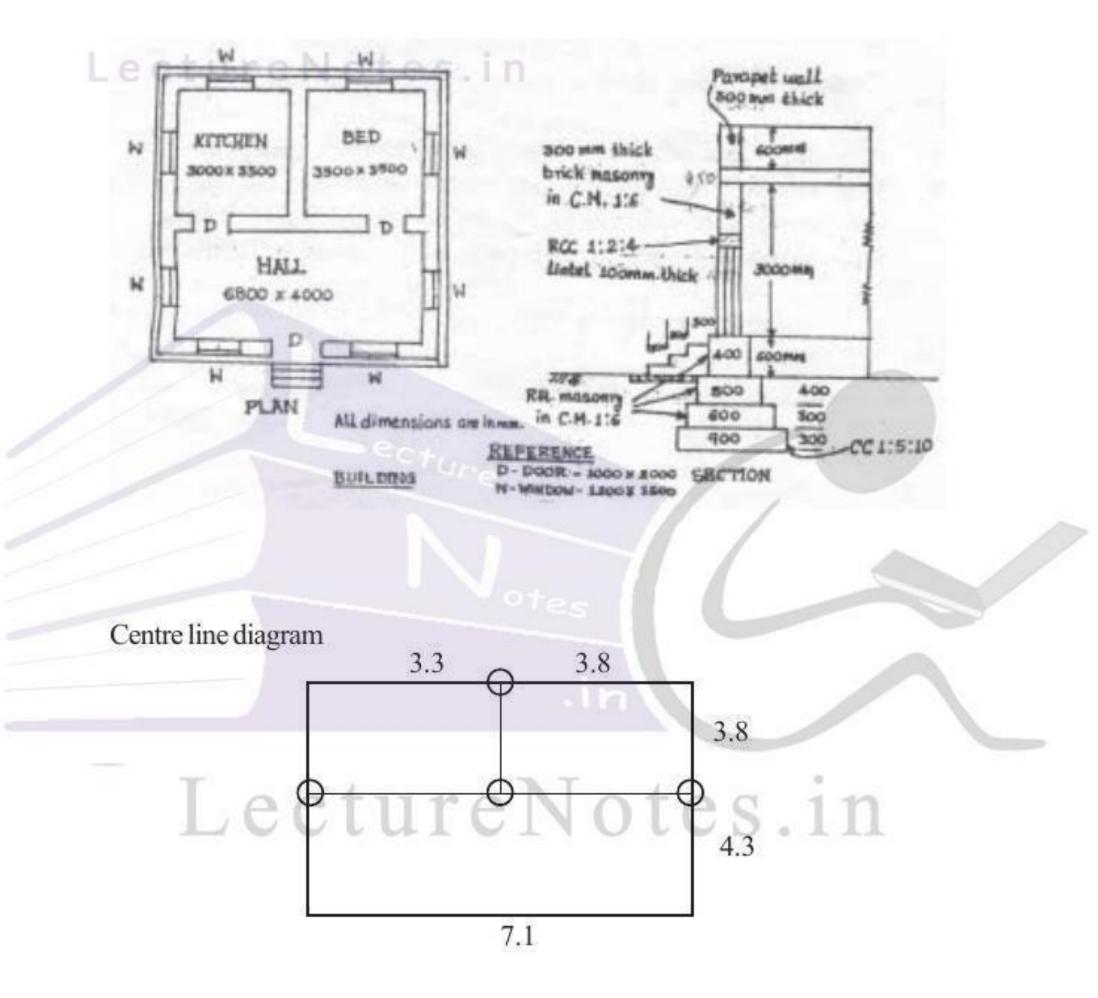
S.No. Particulars of Items	No	L	В	Н	Q	Explanation
1. Earth Work excavat	on					
for foundation	arvier es					
a) Long walls	2	8.6	1.0	1.05	18.05	L=7.6+0.5+0.5=86
b) Short walls	3	5.3	1.0	11.05		
ectureNot	es	ir		Total	34.75	m ³
2. C.C.(1:4:8) bed for).11680.1250.25 (1)	- 10	SECCE
foundation						
a) Long walls	2	8.6	1.0	0.2	3.44	
b) Short walls	3	5.3	1.0	0.2	3.18	65
no Anna chaire a chaireachtaine	VIII.	1500000000	5000040.	Total	6.62	m³
3. Brick masanory for						
footings with CM(1:4)						
first footing						
a) Longwalls	2	8.45	0.85	0.4	5.746	L=7.6+0.425+0.425=8.45
b) Shortwalls	_3	5.45	0.85	0.4	5.560	
2nd fooring		re.			-1	
a) Long walls	2	8.20	0.6	0.45	4.428	L=7.6+0.3+0.3=8.2
b) short walls	3	5.70	0.6	0.45	4.617	L=6.3-0.3-0.3=5.7
		2 3	te.	5	1 (
ii) for base ment	2	8.00		0.4		L=7.6+0.2+0.0=8.0
long walls	3	5.90	0.4	0.4	2.832	L=6.3-0.2-0.2=5.9
short walls	-	7.00	0.2	2.0	11.00	1-7610151015-70
iii) for super structure	2	7.90	0.3	3.0	14.22	
long walls short walls	3	6.00	0.5	3.0	16.20	L-0.5-0.15-0.15-0.0
iv) Parapet wall	41		T.A	U		3.111
7.9						
02 6.6	i)					
V	2	7.00	0.2	0.70	2 2 1 2	
a) long wallsb) Shot walls	4	7.90	0.2	0.70		100001111
b) Shot wans	2	6.20	0.2	0.70	1.736	
Deductions for openings				Total	60.11	
Doors	3	1.0	0.3	2.1	1.89	
Windows	3	1.5	0.3	1.2	1.62	
Lintels over doors	3	1.20	02 92	0.10	0.108	
windows	3	1.70	0.3	0.10	0.153	
Net B.M.=60.11-377=56	.34m ³			Total	3.771	

00.40	DCCVI.2.0C		3 0 1	Janua			
4	RCC(1:2:4)for	19	7.0	2:2	0.10	6056	
	a) roof slab	1	7.9	6.6	1400	6.256	
	b) for lintles over doors	3	1.2	0.3	25,000	0.108	
	Windows	3	1.7	0.3	10.000	0.153	
	c) beams	1	33.8	0.3		3.042	
E	ctureNo	te	5	n	2000	9.298	THE STATE OF THE S
5.	Plastering for walls	1	20.0	n_	3.0	60.00	L=2(4.0+6.0)=20
	a) Inside room1	1	18.0		3.0	54.00	
	room2	1	29.0				L=2(7.9+6.6)=29
	b) out side	1×2	28.2		0.70	39.48	L=2(7.7+6.4)=28.2
	Parapet wall(Sides)	1×1	28.2	0.20	22	5.64	0 20
					Total	246.12	m ²
	Deductions						
	a) doors	3×2	1.0		2.10	12.6	
	b) windows	3×2	1.5		1.20	10.8	
		e			Total	23.4	m²
	Net Plastering	=	246.1	2- 23.	4 =	222.7	$2 m^2$
6.	flooring with cuddapah					7//	
	slab in cm (1:3)					1	
	Room1	1	4.0	6.0		24	
	Room2	1	3.0	6.0		18	
		53.00	J-6/me/mi	5075000	Total	42	m ²
7	Plastering for ceiling =sa	me as	floorin	Q	BUL	42	
8	White washing = same		- 8	100	& Ceil	ing	
	Toot	77	40 (10000000000	=264.72	m ²
9	Colour washing with two	coats	10		A C) [[58.111
	Same as quantity of plas			ls and c	eiling	264.72	m ²
10	5 5 5		l J	0.000	1000		
	a)Doors	3	(50.5055555	1,786		3Nos.	
	b) Windows	3				3 Nos	
11	Painting with ready mixe	d syn	thetic e	namil p	aints tw		
	over primary coat for ne	wwoo	d for				
	a)Doors	$2\frac{1}{4}x^{3}$	1.0	87.00		14.175	
	b) Windows	21/4x3	1.5		.00	11.13	
1.0	20/ 1005000000000000000000000000000000000		557		704 02	25.305	m²
12 13	2% unforeseen items 4% P.S& contingencies						De 042908
13	and round off.						
	and roundon.						
	I.			Ļ .			

b) Centre Line Method

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
е	4.3 3.3 6.3 ture Not	e s	.in				
1. 2.	Total centre line length = (4.3+3.3)2+6.3x3=34.1 Earth work excavation C.C.(1:4:8) bed for foundation	m	33.1 33.1	DOM:	1.05 0.20	34.75 6.62	L=34.1-2x1/2=33.1 m ³
3.	Brick masonry with CM(1:4)						
	a) for foundation i) first footing ii) 2nd footing	1	33.25 33.50				L=34.1-0.85=33.25 L=34.1-0.6 x2/2
	b) for basement c) for super structure	1		0.40	0.40	5.392	L=34.1-0.4 x2/2 L=34.1-0.3 x2/2
	d) for parapet wall 7.9 6.6			77		6.4	
	Total centre line length $=2(7.7+6.4)=28.2$	l _ı r	28.2	0.2	0.70 Total	3.948	Š
	Deductions for Openings Doors windows	3	1.0	0.3	2.1	1.89 1.62	
	Lintels Doors Windows	3	1.2	0.3	0.1	0.108 1.153	lotes.in
	Net B.M.=60.11-3.77	1=50	6.34m³		Total	3.771	m ³
4.	Quantity of R.C.C.Roof, I flooring, White washing is method.	0.0000000000000000000000000000000000000		700	Company and the	777	

Detail & Abstract Estimates of Buildings


34

Abstract estimate of two roomed building (Load bearing type structure)

S.No.	Description of item	Quantity	Unit	Rate	Per	Amount
1.	Earth work excavation	34.75	m³	465	10m ³	1615.90
2.	Cement concrete(1:4:8)	6.62	m^3	1545	$1m^3$	10228.00
3.	Sand filling in basement	12.036	m^3	195.20	$10m^3$	235.00
<u>4</u> .	Brick masonry in country Bricks of standard size in CM(1:8)	56.34	m³	2291	m³	129075.00
5.	R.C.C. (1:2:4) for lintels, beams etc.	3.303	m³	6030	m ³	19918.00
6.	R.C.C.(1:2:4) for slabs,	6.26	m^3	6030	m^3	37748.00
7.	Cement concrete (1:5:10) for flooring	4.2	m³	1452	m^3	6098.40
8.	Supplying and fixing of country wood for doors.	6.3	m³	1650	m ²	10395.00
9.	Supplying and fixing of country wood for windows and ventilators.	5.4	m²	2300	m ²	12420.00
10.	Plastering to all exposed surfaces of brick work and basement with C.M (1:5)	222.72	m²	582	10m ²	12962.30
11	White washing with best shell lime	264.72	m ²	116	10m ²	3070.75
12	Flooring with spartek tiles set in C.M (1:3)	42	m²	4230	10m ²	17766.00
-13	Painting with ready mixed enamel paint	25.305	m ²	335	10m ²	8477.17 128090.00
14	Provision for water supply and sanitary arrangements @12.5%	CIN	0		5 . 1	16011.25
15	Provision for electrification @7.5%					9606.75
16	Provision for architectural appearance @2%	Led	:tu	reN		2561.80
17	Provision for unforeseen items 2%					2561.80
18	Provision for P.S.and contingencies @4%					5123.60
						1

Grand Total 163955.23

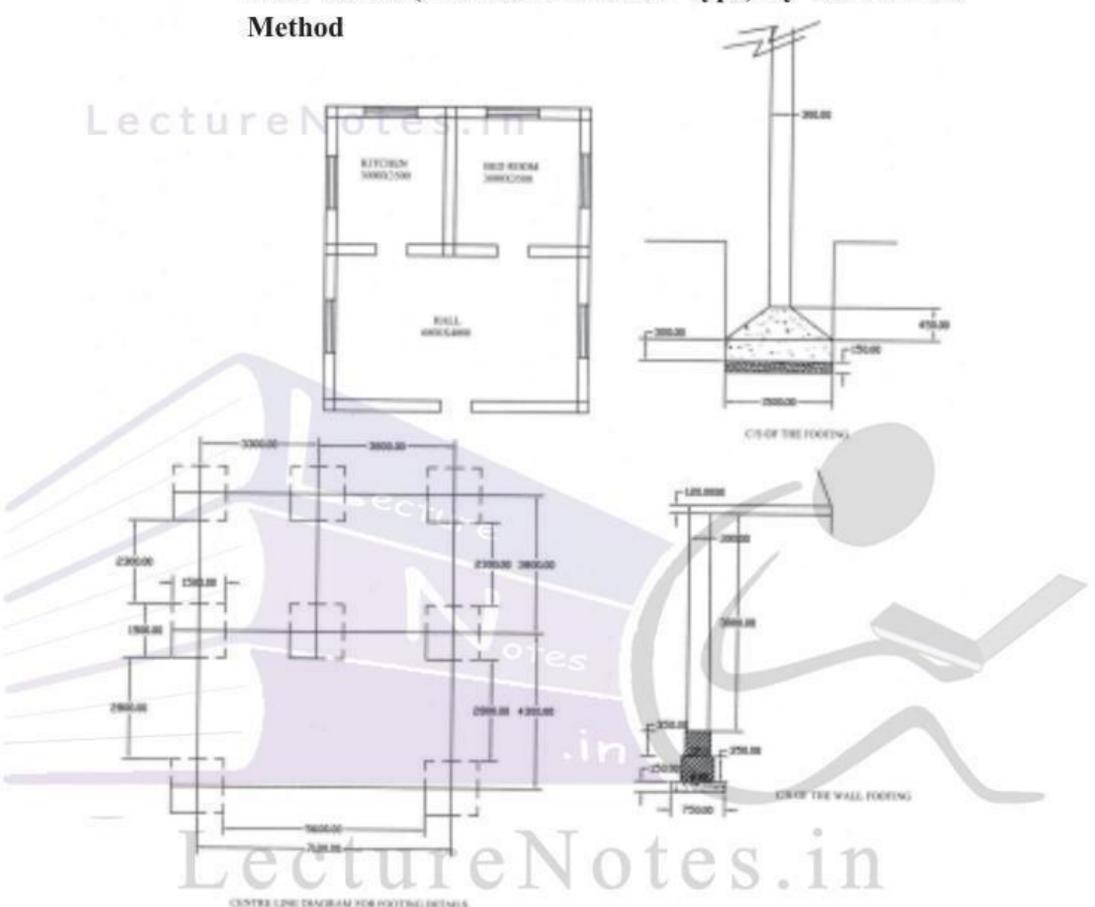
Example 3:- From the given figure below calculate the details and abstract estimate for the single Storeyed residential building with no of rooms (Load bearing type structure) by Centre Line Method

Lecture Notes.in

Total centre line length = $(3.3+3.8)3+3.8\times3+4.3\times2=41.3$ m no of T Junctions = 4

S.No	. Particulars of Items	No	L	В	Н	Q	Explanation
1.	Earth work Excavation	1	39.5	0.9	1.0	35.55	41.3-4x0.9/2=39.5
2.	C.C. bed (1:5:10)	1	39.5	0.9	0.3	10.665	m^3
3.	R.R. Masomary in CM						
	1:6						
	1st Footing	I	40.1	0.6	0.3	7.218	41.3-4x0.6/2=40.1
	IInd Footing	1	40.3	0.5	0.4	8.06	41.3-4x0.5/2=40.3
	Basement	1	40.5	0.4	0.6	9.72	41.3-4x0.4/2=40.5
					Total	25.00	m ³
4.	Damp proof course	1	40.5	0.6		16.2	m ²
	over basement alround						
	the building with CC						
	(1:2:4)						
	Deduct for Door sills	3	1.0	0.3		- 0.9	m ²
	Net Quantity =16.2	-0.9=	=15.3s	q.m			
5.	First class brick work		^{ur} e	200			
	in wall in			200			
	a) superstructure with	1	40.7	0.3	3.0	36.63	L = 41.3 - 4x0.3/2
	CM 1:6			01 ₆	s		
	b) Parapet wall 7.4	1	30.4	0.3		5.472	L=2(7.1+8.1)
	7.7		7.1		Total	42,102	m ³
				es:	0.1	N.A.	
		8.4			8.1		
	0.3	11.	ro			10	gin
	<u>Deductions:</u>	u.		T.			0.111
	Doors	3	1.0	0.3	2.0	1.80	
	Windows	8	1.2	0.3	1.5	4.32	
	Lintel opening over	9.0	HR 163	885,7558	25200150		
	Doors	3	1.2	0.3	0.1	0.108	Asue 100mm
	Windows	8	1.4	0.3		0.336	The second secon
		200	Secretary and the second	100000000000000000000000000000000000000	0.0000000	6.564	side
	Net Quantity of BM	50.0	.102-	6.564		538m ³	
6.	Plastering with 12mmth	1x2	40.1		3.0	240.6	L=41.3-4x0.3=40.1
	inCM1:5						
	Deductions for openings						

31	106			200	50 10	Esti	mation and Costing
S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
	Doors	3x2	1.0		2.0	12.0	
	windows	8x2	1.2		1.5	28.8	
					Total	40.8	m ²
	Plastering for parapet	1x2	30.4		0.6	36.48	
	wall (sides)	e s	-11	1			
	Тор	1	30.4	0.3		9.12	
	27 SX SW SWSSOC X	20 20	57 530	V2 58	Total	45.60	m²
	Net Plastering = 240.6-4	0.8+45	.6=24:	5.4 m ²			
7.	Flooring with 25mmth						
	CC(1:2:4)						
	Kitchen	1	3.0	3.5	222	10.5	
	Bed	1	3.5	3.5		12.25	
	Hall	1	6.8	4.0	55	27.20	
	Sills of Doors	3	1.0	0.3		0.90	
8.	Ceiling=Same as	CTL	r _e		Total	50.85	m ²
	Flooring			4		50.85	m ²
							/
9.	white washing = Same as	s Plaste	ering fo	rwalls	1	1 /	
	and ceiling 245.4+50.85	=296.2	25 m ²				
10.	RCC(1:2:4) for						
	a) Slab	1	7.40	8.40	1.5	9.324	
	b) lintels over Doors	3	1.2	0.3	0.1	0.108	
	Windows	8	1.4	0.3	0.1	0.336	
	c) beams	1	40.7	0.3	0.3	3.663	S.1n
					Total	13.431	m ³
11	Supply & Fixing of best	count	y woo	l for			
	a)Doors	3	50			3Nos.	
	b) Windows	8				8 Nos	
12	Painting with ready mix	177		enamil	paints t	wo coats	Notes.in
	over primary coat for ne				1000000 200		
	a) Doors	2½x3			2.0	13.50	
	b) Windows	2½x8	1.2		1.5	32.40	2
13	2% unforeseen items				9	45.90	m ²
14	4% P.S& contingencies						
4967.6200	and round off.						


Detail & Abstract Estimates of Buildings Abstract estimate of single storeyed residential building with no of rooms (lead

beary type)

S.No.	Description of item	Quantity	Unit	Rate	Per	Amount
1.	Earth work excavation	35.55	m³	465	10m ³	1653.00
2.	Cement concrete(1:4:8)	10.665	m^3	1545	$1 m^3$	164.77.50
3.e	RR.masonry in C.M.(1:5)	25.00	m^3	1391	m^3	34775.00
4.	Sand filling in basement	23.775	m^3	195.20	$10m^3$	464.00
5.	Brick masonry in country bricks of standard size in CM(1:8)	35.535	m³	2291	m³	81417.60
6.	R.C.C. (1:2:4) for lintels, beams etc.	4.107	m³	6030	m³	24765.20
7.	R.C.C.(1:2:4) for slabs,	9.324	m^3	6030	m^3	56223.70
8.	Cement concrete (1:5:10) for flooring	5.085	m³	1452	m ³	7383.40
9.	Supplying and fixing of country wood for doors.	6.00	m ²	1650	m ²	9900.00
10.	Supplying and fixing of country wood for windows and ventilators.	14.40	m ²	2300	m ²	33120.00
11	Plastering to all exposed surfaces of brick work and basement with C.M (1:5)	245.40	m ²	582	10m ²	14282.30
12	White washing with best shell lime	296.25	m²	116	10m ²	3436.50
13	Flooring with spartek tiles set in C.M (1:3)	50.85	m ²	4230	10m ²	21509.50
14	Painting with ready mixed enamel paint	45.90	m ²	335	10m ²	1537.65 306945.35
15	Provision for water supply and sanitary arrangements @12.5%					38368.20
16	Provision for electrification @7.5%	Led	:tu	reN		23020.90
17	Provision for architectural appearance @2%					6138.90
18	Provision for unforeseen items 2%					6138.90
19	Provision for P.S.and contingencies @4%					12277.80

392890.00

Example 4:- From the given figure below calculate the details and abstract estimate for the single storeid residential building with no.of rooms (Framed Structured type) by Centre Line

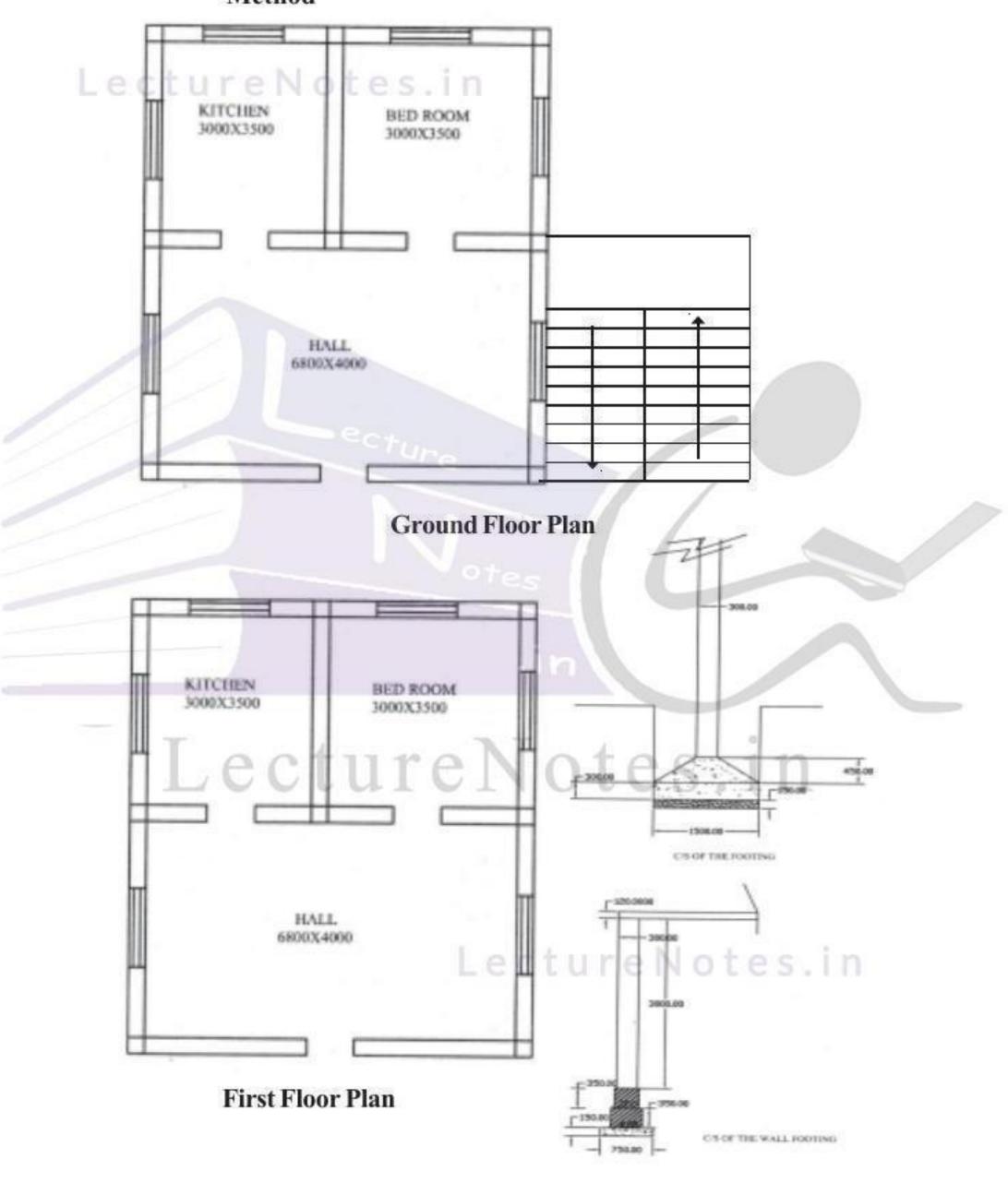
Lecture Notes.in

Detail & Abstract Estimates of Buildings

S.No	. Particulars of Items	No	L	В	Н	Q	Explanation
1	Earth work excavation for foundation for						
	a) pillars	8	1.5	1.5	1.80	32.4	
	b) around the building	1	26.3	0.75	0.85	27.9	L= 5.6+2.8x2+
. е	and cross walls	e.	5.1	n	Total	60.3	2.3x3+(1.8+2.3)2 m ³
2.	C.C.(1:4:8) for						·III ∞
20060	a) pillars	8	1.5	1.5	0.15	2.7	
	b) around the building	1	38.3	0.75	0.15	4.3	L=3.5x3+3x2+
	and cross walls				Total	7.0	3.5x2+4x2+6.8=38.3 m ³
3.	Brick Masonry with C.M. (1:6) for						
Carried States	a) first footing	1	38.3	0.45	0.35	6.03	
	b) Second Footing	1	38.3	0.35	0.30	4.69	
	c) Superstructure	1	38.3	0.3	3.0	4.02	
Section 1	d) Parapet wall	1	30.4	0.3	0.6	5.47	L=(7.1+8.1)x2=30.4
	6.8	7.1			Total	20.21	m ³
Carrier 1		73.1		ote	s		
	7.8		8	.1			
-	0.3				in		
	Deduction for opening						
-	a) Doors	3	1.0	0.3	2.0	1.8	
	b) Windows	8	1.2	0.3	1.5	4.32	S 111
	O) WIRDOWS		1.2	0.5	Total	6.12	m ³
	Net Brick Masonry	=20	.21-6.	12		14.09	
4.	R.C.C.(1:1.5:3) for						
	columns						
	a) Rectangular portion	8	1.5	1.5	0.3	5.40	Notes in
	b) Trepezoidal portion	8	0.9	0.9	0.45	2.92	
	c) Square portion upto GL	8	0.3	0.3	0.9	0.65	
	d) Squareporiton above GL	8	0.3	0.3	3.0	2.16	
	district stat in California	0003		20,000	Same and	11.13	m ³
5.	Plastering with 12mmth in CM 1:5	1x2	40.1		3.0	240.6	
	Deductions for openings						

Estimation and Costing

†1	US ID					Esti	mation and Costii
.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
	Doors	3x2	1.0		2.0	12.0	
	windows	8x2	1.2		1.5	28.8	
					Total	40.8	m²
	Plastering for parapet	1x2	30.4		0.6	36.48	CONTROL OF THE PROPERTY OF THE
	wall (sides)	e s	-11	1	10000-00000		
	Тор	1	30.4	0.3		9.12	
	**			500000	Total	45.60	m²
	Net Plastring=240.6-40	8+45.	5=245.	$4 \mathrm{m}^2$	20000000		25 500 650 2
6.	Flooring with 25mmth						
20	CC(1:2:4)						
	Kitchen	1	3.0	3.5	220	10.5	
	Bed	1	3.5	3.5		12.25	
	Hall	1	6.8	4.0		27.20	
	Sills of Doors	3	1.0	0.3		0.90	
7.	Ceiling=Same as	ctl	ln _e		Total	50.85	m²
	Flooring				-1/00/05/05	50.85	
						7/	/
8.	white Washing = Same a	s Plast	ering fo	r walls			
	and ceiling 245.4+50.85		250000	le:			
9.	RCC(1:2:4) for	SEMBOURS:					
	a) Slab	1	7.40	8.40	1.5	9.324	
	b) lintels over Doors	3	1.2	0.3	0.1	0.108	
	Windows	8	1.4	0.3	0.1	0.336	
	c)beams	1	40.7	0.3	0.3	3.663	S.111
	7				1	13.431	m^3
10	Supply & Fixing of best	count	v wood	for	2000	5(1) 5(
	a)Doors	3	y wood	101		3Nos.	
	b) Windows	8				8 Nos	
11	Painting with ready mix		nthetic	enamil	paintst	The second second second	
11	over primary coat for ne				, L U		10663.111
	(4) (55) (35)	2½x3	ı		2.0	13.50	
	b) Windows	2½x8			1.5	32.40	
\$00K	20/ 0	A C C C			1000	45.90	m ²
12	2% unforeseen items				3		
13	4% P.S& contingencies and round off.						
	and roundon.						
		l	l				

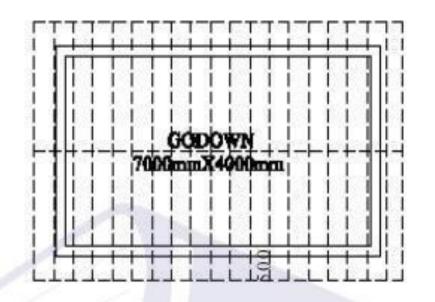

Detail & Abstract Estimates of Buildings

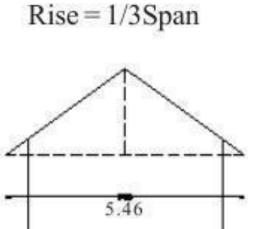
Abstract estimate of single storeyed residential building (framed structure type)

type)			0.		r .	T 39
S.No.	Description of item	Quantity	Unit	Rate	Per	Amount
1.	Earth work excavation	60.30	m³	465	$10m^3$	2804.00
2.	Cement concrete(1:4:8)	7.00	m ³	1545	1m^3	10815.00
L e 3.	Brick masonry in country bricks of standard size in	14.09	m³	2291	10m ³	32250.20
4.	CM(1:5) Reefs columns R.C.C. (1:2:4) for lintels,	15.237	m³	7405	m³	112830.00
5	beams, columns etc.	0.224	m³	6030	m ³	5/222 70
5. 6.	R.C.C.(1:2:4) for slabs, Cement concrete (1:5:10)	9.324 5.085	m ³	1452	m ³	56223.70 7383.40
0.	for flooring	3.003	1115	1432	III	/303.40
7.	Supplying and fixing of country wood for doors.	6.00	m³	1650	m ²	9900.00
8.	Supplying and fixing of country wood for windows and ventilators.	14.40	m²	2300	m ²	33120.00
9.	Plastering to all exposed surfaces of brick work and	245.40	m ²	582	10m ²	14282.30
10	basement with C.M (1:5) White washing with best shell lime	296.25	m ²	116	10m ²	3436.50
11	Flooring with spartek tiles set in C.M (1:3)	50.85	m ²	4230	10m ²	21509.50
12	Painting with ready mixed enamel paint	51.00	m ²	335	S^{10m^2}	1708.50
13	Provision for staircase	LS	m ²			50000.00
14	Provision for water supply and sanitary arrangements				3	354584.60
	@12.5%					44323.00
15	Provision for electrification @7.5%	Led	: t u		ote	26593.80
16	Provision for architectural appearance @2%					7091.70
17	Provision for unforeseen items 2%					7091.70
18	Provision for P.s.and contingencies @4%		44		10	14183.40

Total Rs. 453868.00

Example 5:- From the given figure below calculate the details and abstract estimate for the two storeoied residential building with no.of rooms (Framed Structured type) by Centre Line Method


S.No	. Particulars of Items	No	. L	В	Н	Q	Explanation
							floor is same as previous for the First floor is men-
		t e	s.i	n			
1	R.C.C.(1:1.5:3) for						
10 800	a) Columns	8	0.3	0.30	3.0	2.16	
	b) Slabs	1	7.40	8.4	0.15	9.324	
	c) beams	1	40.7	0.3	0.3	3.663	
	d) lintels over doors	1	1.2	0.3	0.1	0.036	
	windows	6	1.4	0.3	0.1	0.252	
		1754940	Cleaner	3456768655	Total	15.435	m ³
2.	B.M. with CM(1:8) in the	1	28.6	0.3	3.0	25.74	
	first floor			10000			
	Parapet wall	917	30.4	0.3	0.6	5.47	
	Deductions for openings	34344		1940796.0	NI-WORKSTON		
	Doors	1	1.0	0.3	2.0	-0.6	
	Windows	6	1.2	0.3	1.5	-3.24	
	17.10.00	25.74	1+5.47	-0.6-3	E STREET	27.372	m^3
3.	Plastering with CM (1:4)	X - 3 - 3 - 3 - 4 - 6	LILISONIS.				
201	forwalls	1x2	30.4		3.0	182.4	
	for parapetwall sides	1x2	30.4		0.6	36.48	
	Parapet wall Top	1	30.4	0.3		9.12	
	Deductions	n.	re		0	10	g 1n
	Doors	1	1.0	Τ.,	2.0	-2.0	D.III
	Windows	6	1.2		1.5	-10.8	
	0.001245666.005	01550	0.630.81	1		215.2	m²
4.	Flooring with CM(1:3)	1	6.8	7.8		53.04	m²
	Plastering for ceiling with	CM(1	Accessed to the	\$6000000000000000000000000000000000000	looring		200000
6.	White washing or colour						Notes.In
0.	= 53.04 + 21		\$5.8		cimige		m^2
7.	The estimation of a	200	127. A. S.	100	oned s		
1.	rately in the next pro	Service And Ann	ernani/orananona	Henti	oneu s	сра-	
	ratery in the next pro	olelli	5				

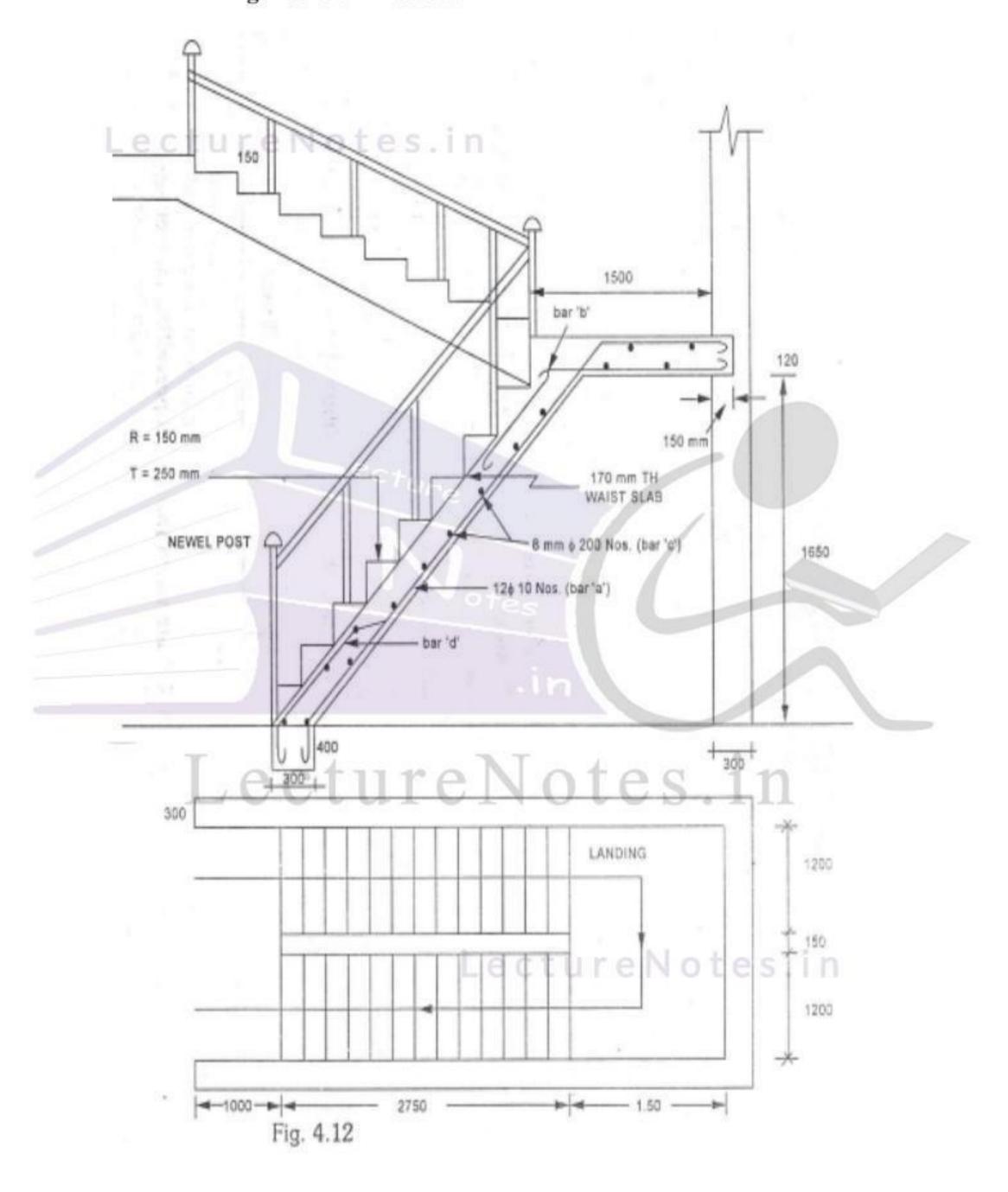

Estimation and Costing

Example 6: - Estimate the Quantities of the pictured roof shown in figure

- a) Size of common rafter = 80x40mm
- b) Size of ridege piece = 120x 200mm
- c) Size of eaves board = $20 \times 300 \text{mm}$

Lecture Note 230mm thick brick wall Common rafters at 450mm c/c

a) Length of Common rafter =
$$\left(\frac{length}{2}\right)^2 + \left(\frac{Span}{3}\right)^2 = \sqrt{2.73^2 + \left(\frac{5.46}{3}\right)^2}$$

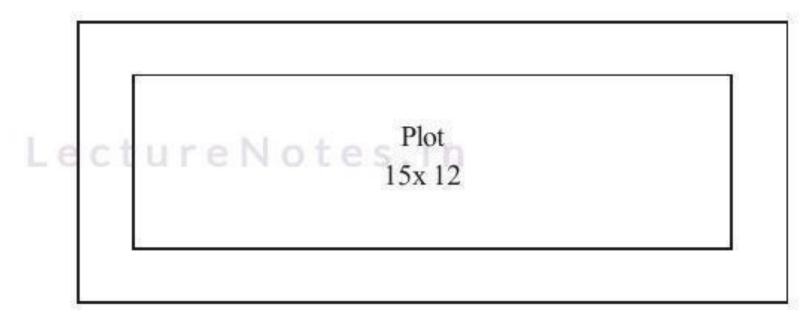

- = 3.28 m
- b) Length of ridge piece = 7.0+0.23x2+0.5x2 = 8.46 m
- c) Length of Eaves board = 2(8.46+5.46) = 27.84m

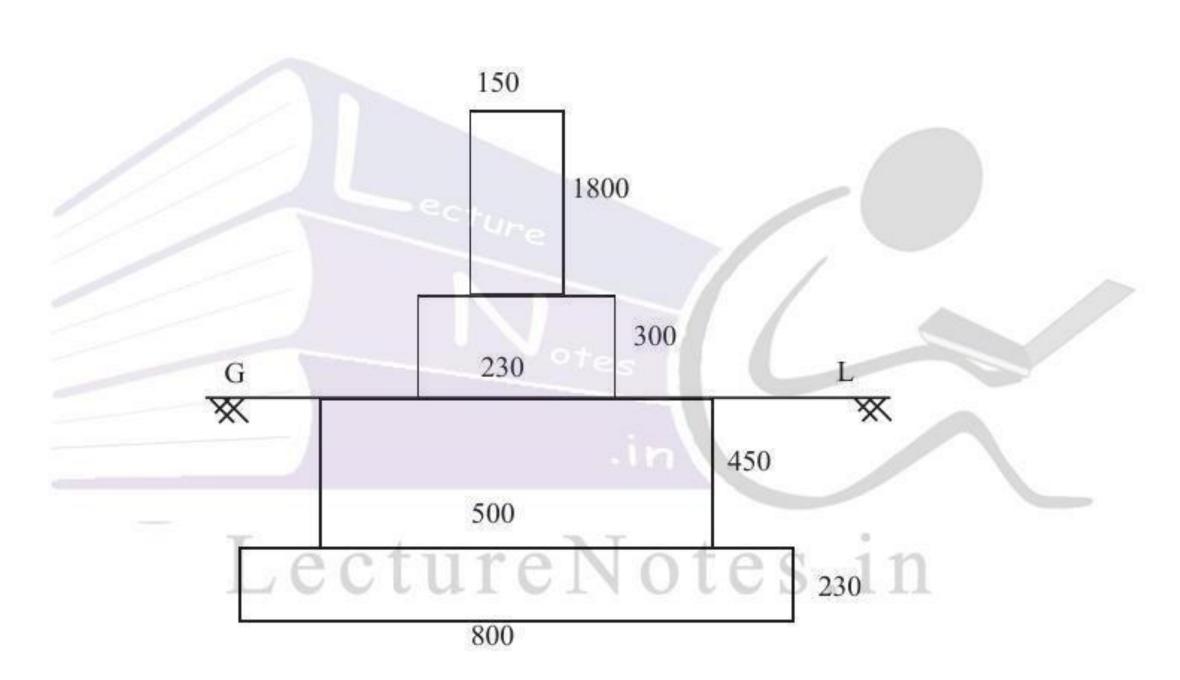
S.No	Description	No	L	В	Н	Qty	Remarks
1	Ridge piece	1	8.46	0.12	0.20	0.20	
2	Eaves Board	1	27.84	- T	0.30	8.35	Unit of eaves Board in m ²
3	Common rafters	40	3.28	0.08	0.04	0.42	Doard III III-

LectureNotes.in

Detail & Abstract Estimates of Buildings

Example- 7: - Calculate the quantities of items of the stair case of the figure shown in below.

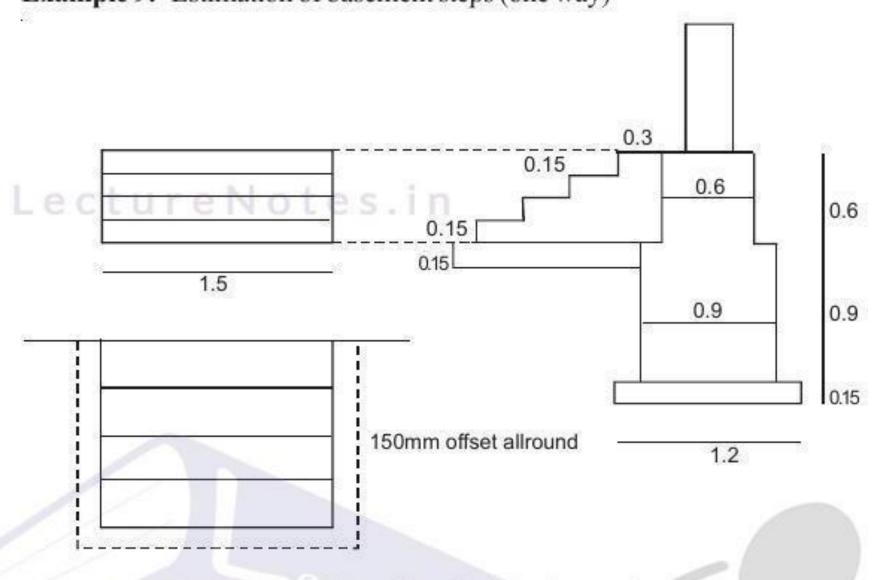



R.C.C. Stair Case

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
1	R.C.C.(1:2:4) excluding			8			
	steel and its fabrication						
e	but including centering	e s	. i r				
	and shultering and						
	binding wire.						
	a) Toe wall	1x1	3.15	0.3	0.4	0.38	m ³
	~					1	L=(1.2+0.15+1.2+2x0.3)
	b) Waist slab for 1 and II	1x2	3.21	1.2	0.17	1.31	
	flights $L = \sqrt{2.75^2 + }$	1.65²	= 3.2	21m			
	c) Landing Middle and	1x2	2.85	1.65	0.17	1.60	L=(1.2+0.15+1.2+2x0.15)
	first floor				Total	3.29	m ³
2.	Ist class brick work in	2x11	1.2	½x(0.	25+1.5)	0.495	
	C.M.(1:4) for steps	ct,	Tanana (
3.	20mm, thick cement		r e				
	plastering (1:5) for steps	A					
_	finished neat					1	
	a) Treads & Rises	2x11	1.2	x (0.25	+0.15)	10.56	
	b) ends of steps	2x11	7.00	½x(0.	25+1.5)	0.41	
					Total	10.97	m ²
4.	2.5cm No sing in steps	2x12	1.2	20		28.8F	M
-5.	2.5cm, C.C. flooring						
	finished neat cement	1 1	0		0	te	g 111
	floating in middle and	4 1		Τ. 4	0		D. LII
	first floor landing.	1x2	2.55	1.2		6.12	m²
6.	Supplying and fixing of						
	best teak wood hand rail						
	finished smooth	1x1	6.67	22		6.67F	
7.	supply and fixing of best			ec	τu	rei	Notes.in
	teak wood newel posts &					9 888	a a
	finished smooth	1x2	1.0	0.1	0.1	0.02	m ³
8.	Cap of Newel post	1x2		22		2Nos	

Detail & Abstract Estimates of Buildings

Example 8:- From the given figure below calculate the details estimate for the Compound Wall


Cross Section of the compound wall

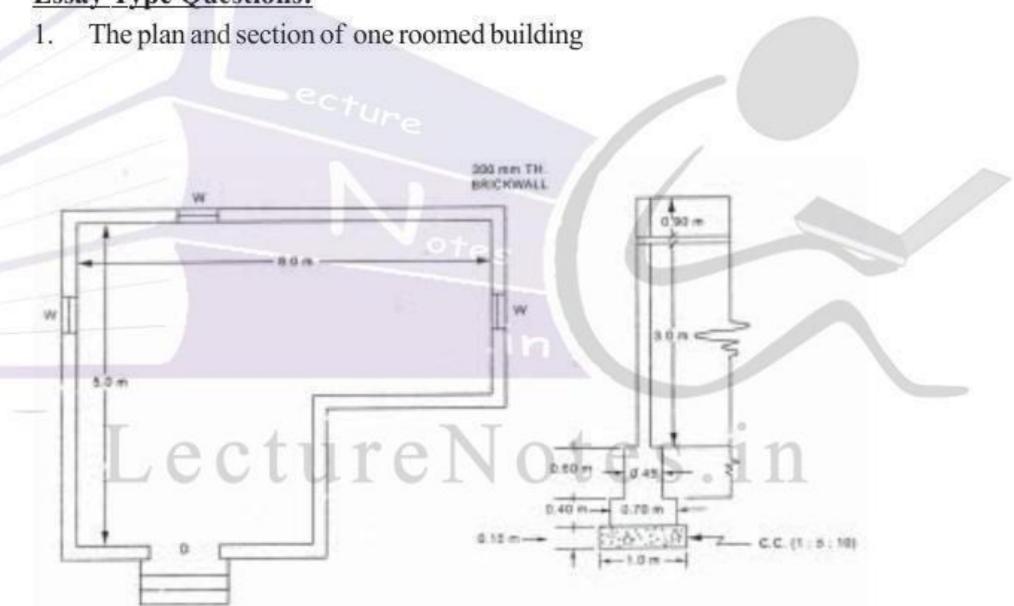
Note: 1) Brick Pillers of size 230x 230 size are built every 3 meters 2) The expansion joints are provided for every 6m length

Estimation and Costing

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
1	Earth work excavation for foundation	1	54.6	0.80	0.68	29.7	m ³
9 (15.15 ture Not 12.15	e s	.ir				
2.	Total Centerline length = 2(15.15+12.15)=54.6 C.C.(1:4:8) for foundation First class brick work in	1	54.6	0.80	0.23	10.04	m ³
	CM(1:6) in foundation	C Ł,			0.45	12.20	
	a) footing	1	54.6	19/03/07/2010	0.45		
	b) Basement	1	34.0	0.23	0.3 Total	3.76 16.04	m³
4.	D.P.C.with C.C.(1:1½:3) 25mmth	1	54.6	0.23		12.56	1891년
5.	a) First Class B.M. in CM(1:6) for wall in	1	54.6	0.15	1.8	14.74	
6.	super structure b) Brick piller @3cm c/c Deduction 150mm th wall Plastering with CM(1:5)	14	0.23 0.15	0.23 0.23	1.8 1.8 Total	1.33 -0.87 15.2	s.in
	a) Outer surface & inner surface (0.3+0.04+1.8) b) Top of wall c) Piller Projection from	1x2 1x1		e 0 0.15	tu	233.69 8.19 2.016	lotes.in
7.	the face of the wall White washing/colour same as item(6)				Total	243.89 243.89	9980

Example 9:- Estimation of basement steps (one way)

Note: All dimensions are in metres

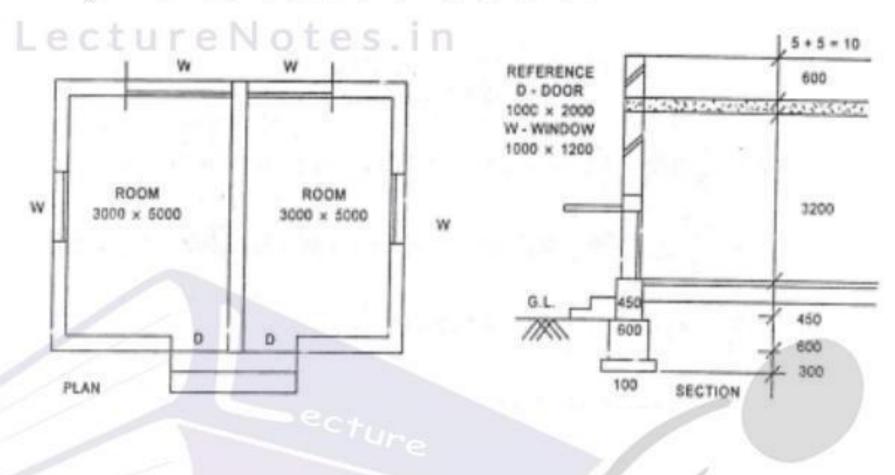

S.No.	Particulars of Items	No.	L	В	Н	Q	Explanation
100	Earth work excavation for foundation	1	1.8	1.35	0.15	0.360	m³
	C.C.(1:4:8) bed for foundation	1	1.8	1.35	0.15	0.360	m ³
3.	Ist class BM in CM (1:4)			EN.A			
	a) 1st step	1	1.5	1.20	0.15	0.27	
	b)2ndStep	1	1.5	0.90	0.15	0.27	0
1	c) 3rd Step	1°	1.5	0.60	0.15	0.13	1.11
6	d)4th step	1	1.5	0.30	0.15	0.06	
	200 200 200425 VII. 1-124 200-4000-02-010-00-02-010-00-0		6300		Total	0.73	m ³
4.	Plastering with CM(1:3)				8		
	a) Threads	4	1.5			1.8	
	b)Risers	4	1.5		0.15	0.9	
6	c) ends a) Ist step	5.540	L	ect	ur	e N	otes.i
	b) 2nd Step	2	1.2		0.15	0.36	
	c) 3rd Step	2	0.9		0.15	0.27	
	d) 4th Step	2	0.6		0.15	0.18	
		2	0.3		0.15	0.09	
5.	white washing/colour				Total	3.60	m ²
	washing $=$ Same as item (4)				8	3.60	m ²

EXERCISE

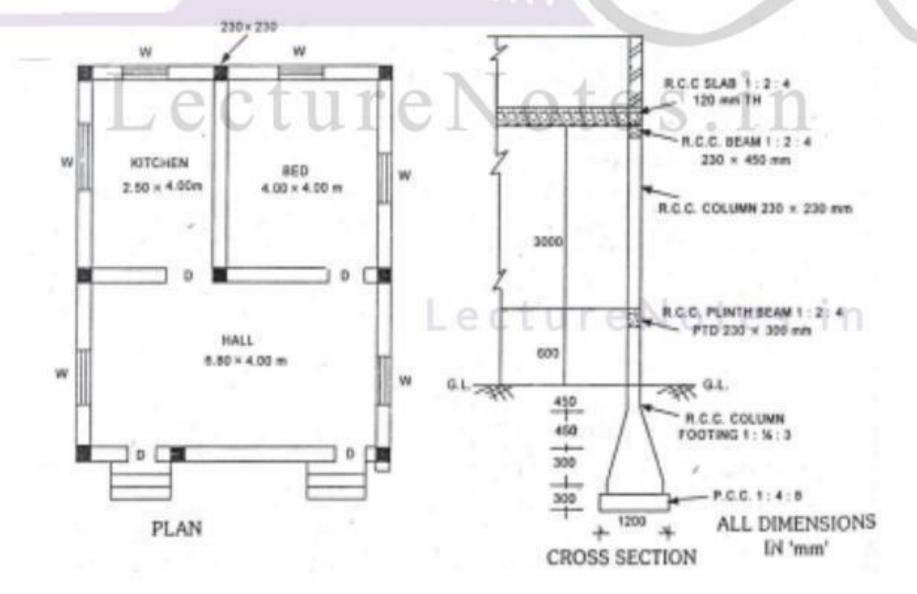
Short Answer Questions

- The internal dimensions of a single roomed building are 5.75x3.75m.
 Find the Centre line length of room and parapet. If the wall thickness of room and parapet are 300mm and 250mm respectively.
- The internal dimensions of a room are 6.25 x 4.25m. find the quantity of sand filling in basemet, the height and thickness of basement are 750mm and 450mm respectively the wall thickness of room is 230mm.

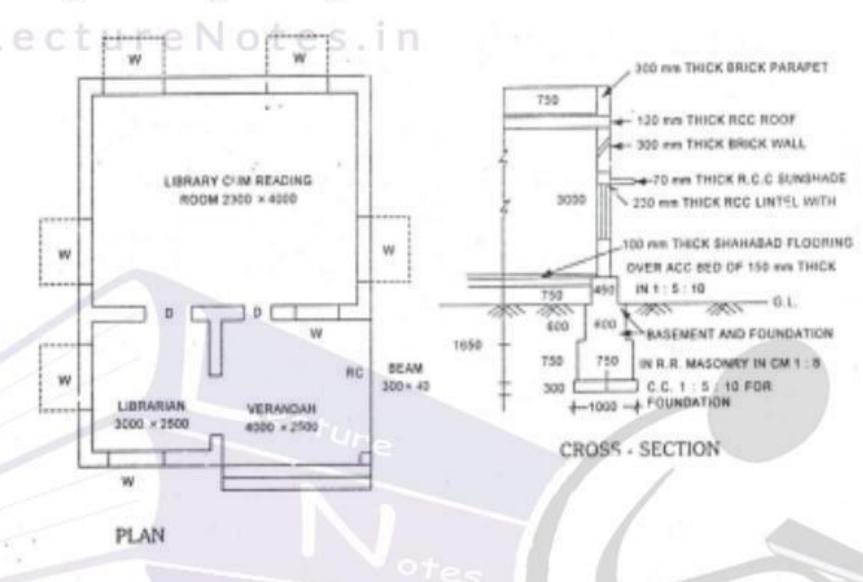
Essay Type Questions:



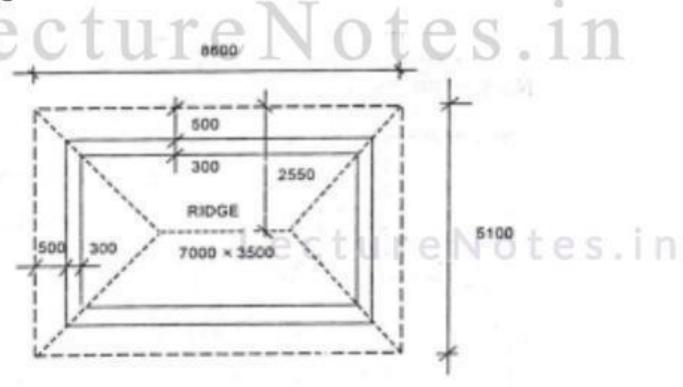
Calculate the following quantities by a) central line method b) Long wall & shortwall method.


- i) Earth work excavation.
- ii) Cement Concrete for foundation.
- iii) Brick in CM 1:6 for footing.
- iv) Brick in CM 1:6 for walls excluding openings

Detail & Abstract Estimates of Buildings

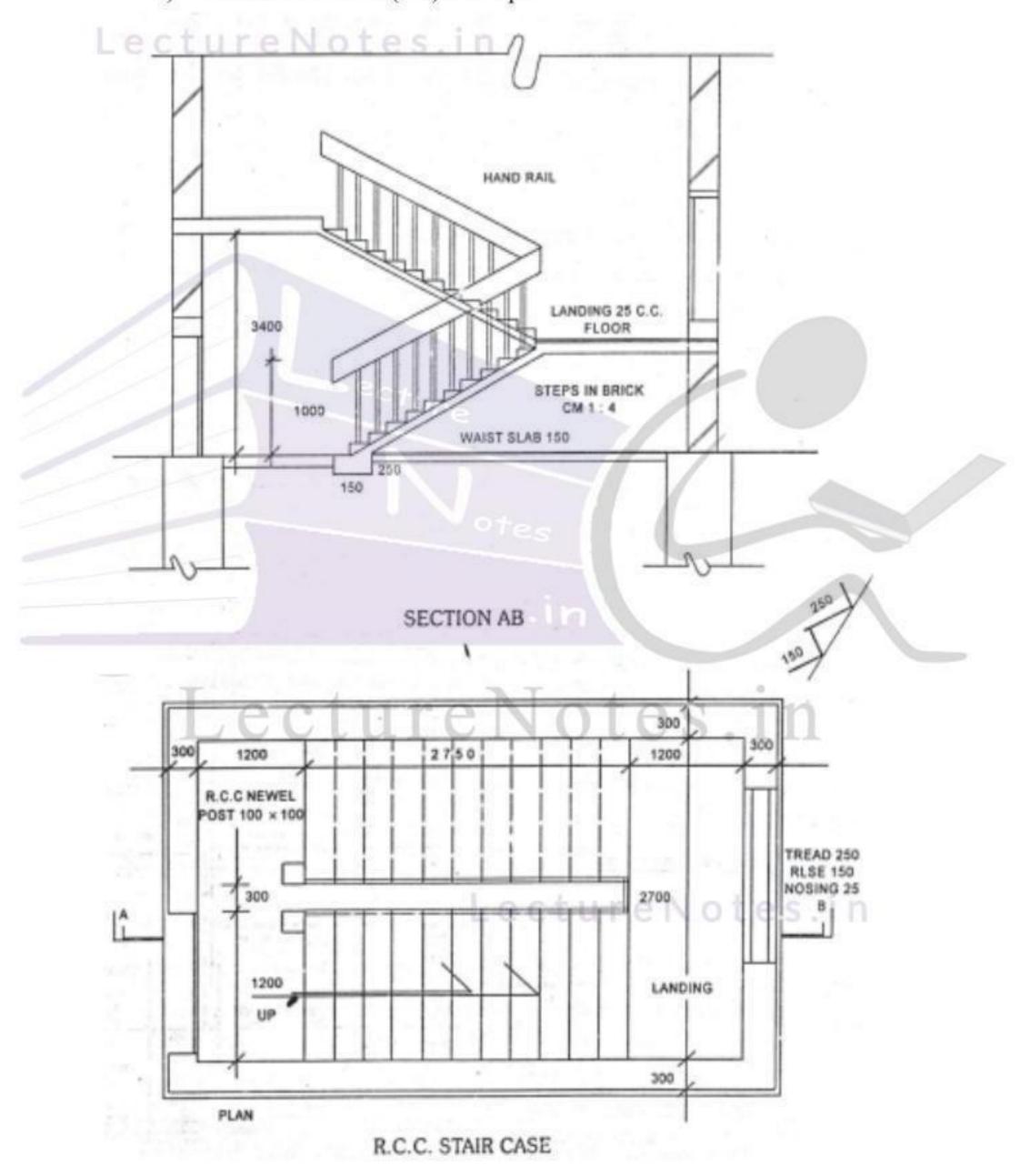

- 2) For a building drawing shown in figure calculate
 - a) Brickwork in CM(1:6)in foundation footing.
 - b) 12mm thick plastering the wall surfaces with CM (1:6) for all super structure walls by central line method.
 - c) Earth work excavation for the foundation.

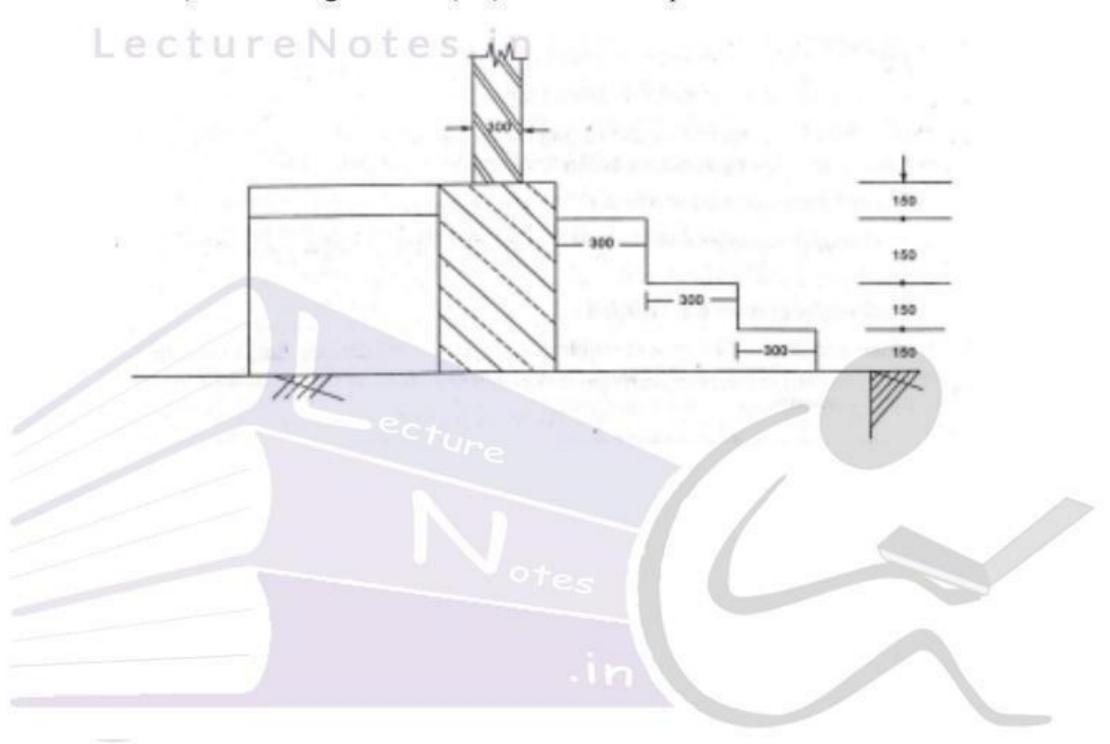
- 3) Repare the detailed estimate for the following items of work for the building shown in figure.
 - a) R.C.C. (1:1.5:3) in columns upto ground level only.
 - b) R.C.C. (1:2:4) in plinth Bleams
 - c) R.C.C. (1:2:4) in slab.



- Prepare the detailed estimate for the following items of work for building shown.
 - a) R.R. masonry in CM 1:6 for footings and basement.
 - b) Brick work in CM 1:6 for super structure.
 - c) Plastering for ceiling with CM 1:3

ALL DIMENSIONS IN 'mm'


- 5) From the Hipped roof shown in sketch, calculate
 - a) Length of Hip rafter
 - b) Ridge Piece


RISE OF ROOF 1/3 SPAN

Detail & Abstract Estimates of Buildings

- For an R.C.C. Stair case shown in fig. Calculate the following contents.
 - a) R.C.C. (1:2:4) for base beam, waist slab, Top and intermediate landings.
 - b) Brick work in CM(1:4) for steps.

- The section of steps at the front of a residential building is shown in fig. Calculate
 - a) Volume of BM in CM (1:5) for all three steps. the length of steps is
 2.1m
 - b) Plastering with CM (1:4) for all three steps.

LectureNotes.in

Lecture Notes.in

ANALYSIS OF RATES

Definition: In order to determine the rate of a particular item, the factors affecting the rate of that item are studied carefully and then finally a rate is decided for that item. This process of determining the rates of an item is termed as analysis of rates or rate analysis.

The rates of particular item of work depends on the following.

- Specifications of works and material about their quality, proportion and constructional operation method.
- 2. Quantity of materials and their costs.
- 3. Cost of labours and their wages.
- Location of site of work and the distances from source and conveyance charges.
- 5. Overhead and establishment charges
- 6. Profit

Cost of materials at source and at site of construction.

The costs of materials are taken as delivered at site inclusive of the transport local taxes and other charges.

Purpose of Analysis of rates:

- 1. To work out the actual cost of per unit of the items.
- To work out the economical use of materials and processes in completing the particulars item.
- To work out the cost of extra items which are not provided in the contract bond, but are to be done as per the directions of the department.
- To revise the schedule of rates due to increase in the cost of material and labour or due to change in technique.

Cost of labour -types of labour, standard schedule of rates

The labour can be classified in to

- 1) Skilled 1st class
- Skilled IInd Class
- un skilled

The labour charges can be obtained from the standard schedule of rates 30% of the skilled labour provided in the data may be taken as Ist class, remaining 70% as II class. The rates of materials for Government works are fixed by

the superintendent Engineer for his circle every year and approved by the Board of Chief Engineers. These rates are incorporated in the standard schedule of rates.

Lead statement: The distance between the source of availability of material and construction site is known as "Lead" and is expected in Km. The cost of convenayce of material depends on lead.

This statement will give the total cost of materials per unit item. It includes first cost, convenayce loading, unloading stacking, charges etc.

The rate shown in the lead statement are for mettalled road and include loading and staking charges. The environment lead on the metalled roads are arrived by multiplying by a factor

- a) for metal tracks lead x 1.0
- b) For cartze tracks Lead x 1.1
- c) For Sandy tracks lead x 1.4

Note: For 1m³ wet concrete = 1.52m³ dry concrete approximately SP.Wt of concrete= 1440 kg/m³ (or) 1.44 t/m³
1 bag of cement = 50 Kg

Example 1:- Calculate the Quantity of material for the following items.

- a) R.C.C. (1:2:4) for 20m3 of work
- b) R.C.C. (1:3:6) for 15m3 of work

a) Quantity of cement required =
$$\frac{1}{(1+2+4)}$$
 x 1.52 × 20 = 4.14m³ x $\frac{1440}{50}$

Quantity of Sand required =
$$\frac{2}{(1+2+4)} \times 1.52 \times 20 = 8.28 \text{m}^3$$

Quantity of cource aggreate =
$$\frac{4}{7}$$
 x1.52x20 = 16.56m³

b) Quantity of cement required =
$$\frac{1}{10} \times 1.52 \times 1.5 = 2.28 \text{m}^3 \times \frac{1440}{50} = 83.86$$

Quantity of sand required =
$$\frac{3}{10}$$
 x 1.52x 15 = 6.84m³

Quantity of CA required =
$$\frac{6}{10} \times 1.52 \times 15 = 13.68 \text{m}^3$$

Analysis of Rates

58

Example 2:- Calculate the quantity of materials for the following items.

- a) C.M. (1:4) for 1m3 of work
- b) CM (1:6) for 1m3 of work

Hint: Cement will go to fill up the volds in sand. So total volume was be 4 instead of 1+4=5

a) Quantity of Cement required =
$$\frac{1}{4} \times 1 = 0.25 \text{m}^3 = 0.25 \text{x} \frac{1440}{50} = 7.2 \text{ bags}$$

Quantity of Sand required =
$$\frac{4}{4} \times 1 = 1 \text{ m}^3$$

b) Quantity of cement required =
$$\frac{1}{6} \times 1 = 0.16 \text{m}^3 = 0.16 \text{ x} \frac{1440}{50} = 4.8 \text{bags}$$

Quantity of sand required =
$$\frac{6}{6} \times 1 = 1 \text{ m}^3$$

Example 3:-Calculate the Quantity of Cement required in bags for the following items.

- a) B.M. in CM(1:3) for 15 cum of work using 0.2m³ of CM required for 1m³ of Brick work
- b) RCC (1:2:4) for 20m3 of work

Sol: a) 1m^3 of Brick work -0.2m^3 of CM(1:3) 15 m^3 of Brick work $=15\times0.2=3\text{m}^3$

Quantity of cement required in bags = $\frac{1}{3} \times 3 \times \frac{1440}{50} = 28.8$ bags

b) Quantity of Cement required in bags=
$$\frac{1}{7}$$
 x 1.52×20× $\frac{1440}{50}$ =125 bags

Example 4:-Calculate the quantity of Cement required in bags for the following items of

work.

- a) C.C. (1:4:8) usy 40mm HBG metals for 30m3 of work
- RR masanry in CM(1:5) very 0.34m³ of CM for 1m³ of masanry for 20m of work

sol: a) Quantity of Cement required =
$$\frac{1}{13} \times 1.52 \times 30 \times \frac{1440}{50} = 101$$
bags

b) $1 \text{m}^3 \text{ of RR masanry} = 0.34 \text{m}^3 \text{ of CM (1:5)}$ $20 \text{ m}^3 \text{ of RR masanry required} = ? 20 \text{x} 0.34 = 6.8 \text{m} 3$

Quantity of cement required
$$=\frac{1}{5} \times 6.8 \times \frac{1440}{50} = 39.2 \text{ bags}$$

Example 5:- Prepare the lead statement for the following materials

ONO	Material	Rate at Source		Lead in KM		
			MT	CT	ST	Conveyance Charge per km
9.00	40mm HBG Metal	Rs.120/m³ D		5	7	Rs.5.00/m³
- 00	River Sand	Rs.15/m ³	3	2	9	Rs.3.50/m ³
	Cement	Rs. 135/bags	2	1	4	Rs. 4.00 per 4km/bag

-	300	-366	ľ				0.0		
S.No.	Mateial Mateial	Rate of	r e	Lead in KM	M	Equalant	Conveyance	Conveyance Total convey-	- Total cost
		Source	MT	MT CT	ST	lead in km	Charge	ance Charge	
ı.i	40mm HBG Metal	Rs.120/m ³	J	5	7 0	5×1.1+7×1.4=153 5.00/m3	5.00/m3	15.3x5=76.5	15.3x5=76.5 120+76.5=196.5/m ³
5.	River Sand	Rs.15/m ³	8	2	9	3x1+2x1.1+6x1.4 3.50/m3	3.50/m3	13.6x3.5=47.6	13.6x3.5=47.6 15+47.6=62.6/m ³
	l l'		1	1	I	=13.6			
3.	Cement	Rs. 135/bags	7	1	4	2x1+4x1.4=7.6 4.00per4km/bag 7.6	4.00per4km/bag	7.6	135+7.6=142.6/bag
	N		3.5					$\frac{1}{4.0}$ x 4.0=7.6	

Cost of cement at site = 142.6/bag

1 bag of cement = 50kg sp.wt of cement = 1440 kg/m³ = 1.44t/m³

Cost of Cement = $142.6x \frac{1440}{50} = 4106.88$

Example 6:- Prepare the lead statement for the following materials

ONO	Material	Rate of Source		Lead in KM	nKM	Conveyance Charge	Seinarage	Cess
S.INU.			ST	CT	MT	per km	Charges	Charges
ï	Cement	Rs.2100/10 KN (torm)	5	2	3	Rs.1.5/m ³	rk	1
2.	Bricks	Rs.850/100nos	2	1	3	Rs.30/1000Nos/Km	35	13
3.	Sand	Rs. 15/m ³	4	2	5	Rs.9.00 / km/cum	30	12
4.	40mm HBG Metal Rs. 250/m ³	Rs. 250/m ³	c	2	2	Rs.6.50/Km/m ³	35	15

				ľ								
N.	Material	Rateof	Le	Lead in KM	M	Equalant	Conve-	Total	Seinerage	Cess	Total cost	
		Source c 1	ST	ST CT MT	MT	lead in km	yance Charge Rs.	conveyance Charge Rs.	Charge Rs.	Charge Rs.	90	
_:	Cement	Rs2100/10KN	5	2	3	5x1.4+2x1.1+3x1=11.2	1.50	16.80	1	ŀ	2116.8/10KN	
2.	Bricks	Rs.850/1000nos	5	ļ	3	5x1.4+3x1=10	30	300.00	35	13	1198/1000nos	
3.	Sand	Rs. 15m ³	3 6-1	2	7	1x1.4+2x1.1+2x1=5.6	9.00/m ³	50.40	30	12	107.4/m ³	
4.	40mmHBG Rs. 250/m ³	Rs. 250/m ³	æ	7	7	3x1.4+2x1.1+2x1=8.4	6.5/m ³	54.6	35	15	354.6/m ³	
	Metal	t		0								
		6			0							

Estimation and Costing

Example 7:- Prepare a data sheet &calculate the cost of the following items of works:

a) Plastering with cement mortar (1:4), 20 mm thick unit-10m²

0.21m3 C.M. (1:4)

0.66 Nos. Brick layer I class

1.54 Nos. Brick layer II Class

0.5 No.s Men Mazdoors

3.2 Nos. Women mazdoors

L.S. Sundries.

b) R.R. Masonry in C.M. (1:6) -1m³

1.1 m³ Rough stones

 $0.34 \,\mathrm{m}^3$ C.M. (1:6)

0.54 No.s Mason I Class

1.26 Nos. Mason II Class

1.40 Nos. Men mazdoors

1.40 Nos. Women mazdoors

LS. Sundries.

Lead Statement of materials:

S.No.	Materials	Cost at Source Rs Ps.	Per	Lead in Km	Conveyance Charges per km
1 2	Rough stone Sand Cement	260=00 12=00 2100=00	m ³	O 25 e	5=00/m3 4=00/m3
3	Cement	2100-00	10kn or 1tonne	Local	5.

Lecture Notes.in

Labour Charges:

- 1. Mason / Brick layer I Class Rs.100=00 per day.
- 2. Mason /Brick layer II class Rs. 80=00 per day
- 3. Men mazdoor Rs. 60=00 per day
- 4. Women mazdoor Rs. 60=00 per day
- 5. Mixing charges of cement mortar Rs. 16=00perm³

Analysis of Rates

62

Lead Statement:

S.No.	Material	Cost at Source	Per	Lead in KM	Conveyance Charge Rs.	Total convenyance Charge Rs.	Total cost Rs.
1	Rough Stone	260.00	m^3	18	$500/m^3$	90.00	350.00
- 2	sand	12.00	S_{m^3}	25	$4.00/m^3$	100.00	112.00
3	Cement	2100	10KN	Local		777	2100/
			or 1tonne				tonne

a) Plaster with CM (1:4), 20mm thick, unit-10m²

Cost of CM (1:4) for 0.21m3

cost of Cement =
$$\left(\frac{1}{4} \times 0.21 \times 1.44\right) \times 2100 = 158.76$$

Cost of Sand =
$$\left(\frac{4}{4} \times 0.21\right) \times 112 = 23.52$$

Total Cost Rs. 182.28

S.No.	Description	Quantity	Unit	Rate	per	Amount
1	CM(1:4)	0.21	m³	182.28	0.21m ³	182.28
2	Brick layer I class	0.66	Nos	100	day	66.00
3	Brick layer II Class	1.54	Nos	80	day	123.20
-4	Men mazdoors	0.5	Nos	60	day	30.00
5	Women mazdoors	3.2	Nos	60	day	192.00
6	Mixing Charges	0.21	m^3	16	m^3	28.16
7.	Sundrys	L.S.		1 22	545576	3.36

Total Rs. 625.00

b) RR Masanry in CM (1:6) -1m³
Cost of CM (1:6) for 0.34m³
Lecture Notes in

Cost of Cement =
$$\left(\frac{1}{6} \times 0.34 \times 1.44\right) \times 2100 = 171.36$$

Cost of Sand =
$$\left(\frac{6}{6} \times 0.34\right) \times 112 = 38.08$$

Total Cost Rs. 209.44

Estimation and Costing

S.No.	Description	Quantity	Unit	Rate	per	Amount
1	Rough Stone	1.1	m^3	350	m^3	385.00
2	CM(1:6)	0.34	m^3	209.44	0.34m ³	209.44
3	Mason IClass	0.54	Nos	100.00	day	54.00
4	Mason II Class	1.26	Nos	8.00	day	10.08
e 50	Men Mazdoors	1.40	Nos	60.00	day	84.00
6	Women Mazdoors	1.40	Nos	60.00	day	84.00
7	Mixing Charges	0.34	m^3	16.00	m^3	5.44
8	Sundries	L.S.				18.04

Total Rs. 850.00/m3

Example 8:-Prepare a data sheet and calculate the cost of the items given below:

- a) Brick masonry in C.M. (1:6) with country bricks-unit Icum.
 600Nos. country bricks.
 - 0.38m3 C.M.(1:6)
 - 1.40Nos. Mason
 - 0.7 Nos. Man Mazdoor
 - 2.1 Nos. Woman Mazdoor
 - L.S. Sundries.
- b) C.C.(1:5:10) using 40mm HBG metal unit 1cum.
 - 0.92m³...... 40mm size HBG metal
 - 0.46m3...... Sand
 - 0.092m3..... Cement
 - 0.2 Nos Mason
 - 1.8 Nos Man Mazdoor
 - 1.4 Nos. Woman Mazdoor
 - L.S. Sundries.

Lead Statement of materials:

S.No.	Material	Cost at Source Rs. Ps.	Per	Lead in Km	Conveyance Charges per Km
1	40mmHBG metal	210=00	m³	16	Rs.6=00/m ³
2	Sand	16=00	m^3	18	Rs.3=00/m ³
3	Bricks country	780=00	1000Nos	at site	\$250 \$150 \$150 \$150 \$150 \$150 \$150 \$150 \$1
4	Cement	2600=00	10KN	at site	
			or		
			1tonne		

Analysis of Rates

64

Labour charges:

- Mason- Rs. 90 per day.
- ii) Man Mazdoor Rs. 70 per day
- iii) Woman Mazdoor Rs. 70 per day.
- iv) Mixing Charges of C.M. Rs. 20=00 per m³.

Lead Statement: \ o t e s i n

Sl. No.	Material	Cost at Source	1 01	Lead in KM	Conveyance Charge Rs.	Total conveyance Charge Rs.	Total cost Rs.
1	40mm HBG metal	210.00	m^3	16	Rs.6/m ³	96.00	306.00
2	sand	16.00	m^3	18	$Rs.3/m^3$	54.00	70.00
3	Country bricks	780.00	1000nos	at Site	1707		780.00
4	Cement	2600	10kn or 1tonne	At site	***		2600/t

a) B.M. CM(1:6) with country bricks - 1m³
 CM (1:6) - 0.38m³

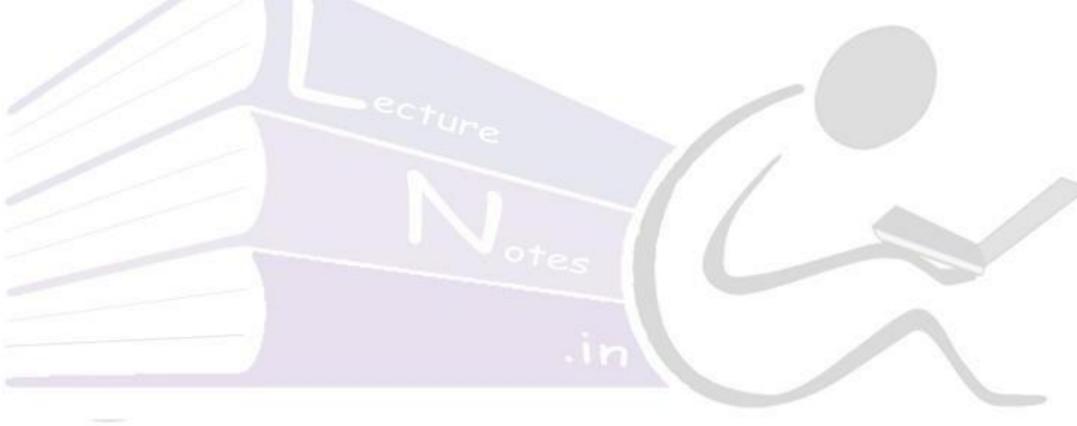
Cost of Cement =
$$\left(\frac{1}{6} \times 0.38 \times 1.44\right) \times 2600 = 237.12$$

Cost of Sand =
$$\left(\frac{6}{6} \times 0.38\right) \times 70 = 26.60$$

Total Cost Rs. 263.72

S.No.	Description	Quantity	Unit	Rate	per	Amount Rs.
1	Country Bricks	600	Nos	780	1000	769.23
2	CM (1:6)	0.38	m^3	263.72	0.38m ³	263.72
3	Mason	1.4	Nos	90_ \	day -	126.00
4	Man mazdoors	2.1	Nos	70	day	147.00
5	Mixing Charges	0.38	m^3	20	m^3	7.60
6	Sundries	L.S				86.44

Total Rs. 1400.00


65

Estimation and Costing

b) CC (1:5:10) using 40mm HBG metal -1m3

S.No.	Description	Quantity	Unit	Rate	per	Amount
1	40mm HBG metal	0.92	m^3	306	m ³	281.52
2	Sand	0.46	m^3	70	m^3	32.20
3 -	Cement	0.092	m^3	2600	t	344.45
4	Mason	0.2	Nos	90	Nos	18.00
5	Man mazdoor	1.80	Nos	70	Nos	126.00
6	women Mazdoor	1.4	Nos	70	Nos	98.00
7	Mixing charges	1.0	m^3	20	m^3	20.00
8	Sun dries	L.S			(C=7001)/12	4.83

Total Rs. $925.00 / m^3$

LectureNotes.in

LectureNotes.in

Les	Lead Statement Town data for Guntur Town Buildings as per 2004-05-"S.S.R.	own Buildings	as per 2	004-05-	S.S.R.					Lec	
SI. No.	Description of Material	Source of supply		Lead in Km	Lead in Intial cost Km of material	Deduct Stacking charges	Convey- ance Charge	Blasting Charges	Seinorage Charges	Crushing charges	Total Cost
B → 3	Cement	Local	Mt 0.00	0.00	2700.00	0.00	00.00	0.00	0.00	0.00	2700.00
7	Sand for Mortar	Krishna River	Cum	34KM	71.00	-3.70	181.50	0.00	36.00	00.0	284.80
3	Sand for Filling	T.lapalem Vagu	Cum	28km	28.00	-3.70	16.90	0.00	36.00	00.0	224.20
4	Gravel	Perecherla	Cum 12km	12km	38.50	-3.70	110.20	0.00	20.00	00.0	165.00
2	40mm HBG metal	Lam	Cum	11km	269.00	-6.10	119.60	53.00	45.00	67.25	547.75
9	20mm HBG Metal	Lam	Cum	11km	469.00	-6.10	119.60	53.00	45.00	117.25	797.75
7	12mm HBG metal	kam	Cum	-11km	375.00	-6.10	119.60	53.00	45.00	93.75	680.25
∞	10mm HBG metal	Lam	Cum	11km	313.00	-6.10	119.60	53.00	45.00	78.25	602.75
6	6mm HBG metal	Lam	Cum 11km	11km	237.00	-6.10	119.60	53.00	45.00	59.25	507.75
10	R.T.Steel	Local	Mt	-	275.00	A	1	1	i.	1	275.00
Ξ	Bricks	Kollur	1000	1000 48km	1250.00	-5.90	424.70	1	1	1	1668.80
12	R.R.Stone for	Perecherla	Cums	11km	107.00	-6.10	119.60	51.50	45.00	1	317.00
	masonry works	e s	11				4				

Estimation and Costing

Preparation of Unit rates for finished items of words

I a) Cement Concrete in foundation (1:5:10)

S.No.	Description of Item	Quantity	Unit	Rate	Per	Amount
1.	40mm HBG Metal	0.92	Cum	547.75	Cum	503.93
2.	Sand	0.46	cum	284.80	Cum	131.00
C3.C	Cement Notes	0.092	Cum	2700.00	MT	357.70
4.	Mason Ist Class	0.06	No	150.00	Nos	9.00
5.	Mason 2nd Class	0.14	No	131.00	Nos	18.34
6.	Man mazdoor	1.80	No	101.00	Nos	181.80
7.	Women Mazdoor	1.40	No	101.00	Nos	141.40
8.	Add Extra 15%on M.L					52.58
						1395.75
9	Add T.O.T. @4%					55.83
10	Sundries					0.42
				Total D		1452.00

Total Rs. 1452.00

b). Cement Concrete in foundation (1:4:8)

S.No.	Description of Item	Quantity	Unit	Rate	Per	Amount
1.	40mm HBG Metal	0.92	Cum	547.75	Cum	503.93
2.	Sand	0.46	Cum	284.80	Cum	131.00
3.	Cement	0.115	Cum	2700.00	MT	447.12
4.	Mason Ist Class	0.06	No	150.00	Nos	9.00
5.	Mason 2nd Class	0.14	No	131.00	Nos	18.34
6.	Man mazdoor	1.80	No	101.00	Nos	181.80
7.	Women Mazdoor	1.40	No	101.00	Nos	141.40
8.	Add Extra 15%on M.L				34	52.58
						1485.17
9	Add T.O.T. @4%					59.40
10	Sundries	13 11W1 9				0.43
		Le	CtU	Total Rs.	OIE	1545.00

2) R.C.C.Works

V.R.C.C.(1:2:4) Nominal mix using 20mm Normal size hard broken granite metal approved quarry with necessary reinforcement including casting, curing cost & conveyance of all materials.

Analysis of Rates

68

2 a) P.C.C.(1:2:4)

S.No.	Description of Item	Quantity	Unit	Rate	Per	Amount
1.	20mm HBG Metal	0.92	Cum	797.75	Cum	733.93
2.	Sand	0.46	cum	284.80	Cum	131.00
3.	Cement	0.23	Cum	2700.00	MT	894.24
4.	Mason Ist Class	0.2	No	180.00	Nos	30.00
5.	Man mazdoor	1.8	No	131.00	Nos	235.80.
6.	Women Mazdoor	1.4	No	101.00	Nos	141.40
7.	Vibrating charges	1.0	Cum	101.00	Nos	101.00
8.	Machiny mixing concrete	e 1.0	Cum	28.80	cum	28.80
9	Add Extra 15%on M.L			a war a said a said		76.23
			,	Total Rs		2372.40

b) For steel reinforcement

S.No.	Description of Item	Quantity	Unit	Rate	Per	Amount
1.	cost of steel	1.00	MT	27500	MT	27500.00
2.	Fabrication charges	1.00	MT	5.00	Kg	5000.00
3.	Add 15% on M.L.					750.00
		0+	25	4 (33250.00
4.	Add T.O.T. @4%					1330.00
5.	Sundries		Pice			0.00
	·		三人人用	Total Rs		34580.00

c) V.R.C.C (1:2:4) for bed blocks, column footings including form work centering charges

S.No.	Description of Item	Quantity	Unit	Rate	Per	Amount
1.	V.P.C.C (1:2:4)	1.00	Cum	2372.40	Cum	2372.40
2.	Centering Charges	1.00	Cum	430.00	Cum	430.00
3.	Steel @ $0.5\% = 0.5/$ 100= 0.005 m ³	Le	ctu	reN	ot	es.in
	(0.005x7.85t/m3 =	0.04	MT	34580.00	MT	1383.20
	0.04t					4185.60
4.	Add T.O.T. @4%					167.40
	Sundries					0.00
		-	SX	Total Rs		4353.00

69
d) V.R.C.C (1:2:4) for columns rectangular beams, pedastals including form work at centering charges.

S.No.	Descrtiption of Item	Quantity	Unit	Rate	Per	Amount
1.	V.P.C.C. (1:2:4)	1.00	Cum	2372.40	Cum	2372.40
2.	Centering Charges	1.00	Cum	675.00	Cum	675.00
3.	Steel for columns, bea	ms 0.117	MT	34580.00	MT	4072.00
	@1.5% =1.5/					7119.40
	100x7.85=0.117t					
4.	Add T.O.T. @4%					284.77
5.	Sundries	34		<u>u</u> 2		0.83
				Total Rs.		7405.00

e) V.R.C.C (1:2:4) for slabs, lintels including form work at centering charges upto 100mm, thick

S.No.	Descrtiption of Item	Quantity	Unit	Rate	Per	Amount
1.	V.P.C.C (1:2:4)	1.00	Cum	2372.40	Cum	2372.40
2.	Centering Charges	10.00	Cum	710.00	Cum	710.00
3.	Steel for slabs	0.0785	MT	34580.00	MT	2714.53
	$@1\% = 1/100 \times 7.85 =$	200000	U.a.			5796.63
	0.0785 t					
	Add T.O.T. @4%	eN	0	tes	S . İ	231.87
	Sundries		8	8 3	- 7	1.20
				Total Rs.		6030.00

 Pointing to R.R.Masonary in CM(1:4) mix using cost & conveyance of Cement, sand and all materials from approved sources to site and labour charges for point neatly etc.

Analysis of Rates

Add TOT @ 4%

Sundries

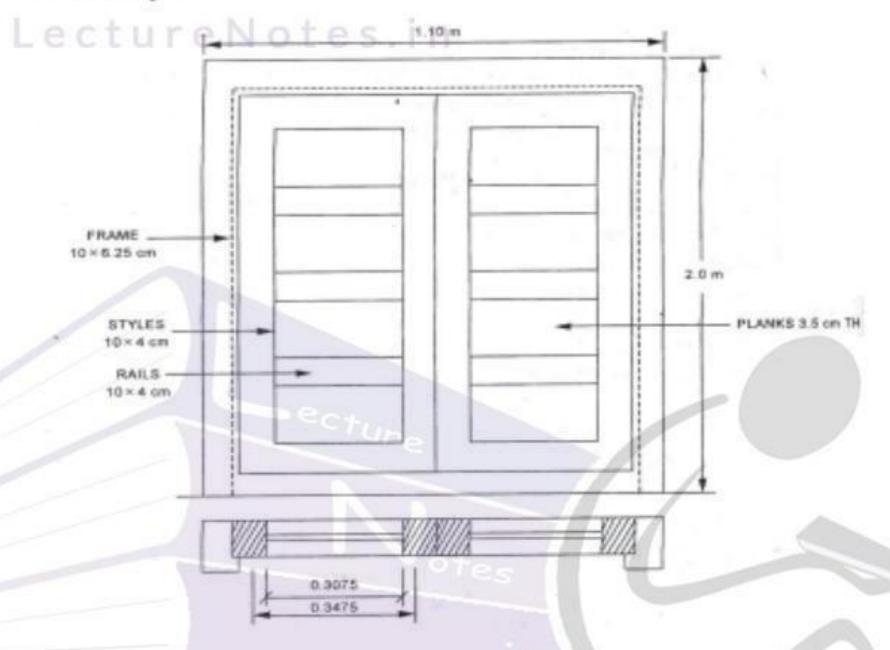
9.

10.

S.No. Description of Item Quantity Unit Per Rate Amount Cost of CM(1:4) 0.09 Cum Cement = 1. $\frac{1}{4}$ ×1.44x0.09 2700.00 Mt 87.48 0.032 t Sand = $\frac{1}{4} \times 0.09$ 25.63 0.09 284.80 Cum Cum Mining Charges 32.50 3. 1.0 32.50 Cum Cum 72.00 0.48 150.00 Nos Nos. mason Ist Class 4. 146.72 131.00 Nos 1.12 Nos 2nd Class 5. 55.00 0.50 101.00 Nos Nos Man mazdoor 6. 111.10 1.10 Nos 101.00 Nos Women Mazdoor 57.72 Add 15% on ML 8. 588.15

Total Rs. 612.00

23.53


0.32

70

4. Cement concrete flooring (1:2:4) using 12mm HBG machine crushed chips from approved quarry to site of work including curing cost and conveyance of all materials completed.

S.No.	Description of Item	Quantity	Unit	Rate	Per	Amount
1.	12mm HBG metal	0.92	Cum	680.25	cum	625.83
2.	crushed chips	CI	AO		9 .	TTT
3.	Sand	0.46	cum	284.80	cum	131.00
4.	Cement	0.23	cum	2700	mt	894.24
	(0.23m3x1.44=0.33t	(or)0.331	MT			
5.	Mason ISt class	0.06	Nos	150.00	nos	9.00
6.	2nd Class	0.14	nos	131.00	nos	€ S - 18.34
7.	Man mazdoor	1.80	nos	101.00	nos	181.80
8.	Women Mazdoor	1.40	nos	101.00	nos	141.40
9.	Add 15% Extra on ML					52.58
2.500						2054.19
10	Add TOT @4%					82.17
11.	Sundries			1915-couwan 1775-645		0.64
	Section and section (SECTION SECTION S	ē 15	·	Total R	ls.	2137.00

5 a) Supply and fixing teak wood fully panneled with 10x 4 cm styles, and 10x4cm rails and 3.5CM TH panels with teak wood fram of 6.25x 10cm size including cost of hold fasts, but hinges and labour charges for fixing door in position and fixing furniture etc., complete for one door of size 1.100 x 2.00 of area 2.2 sqm.

Requirements:

i)	Verticals = $2x 2.0 \times 0.10 \times 0.0625 =$	0.0250	0
.:>	Harizantala - 1 x 1 10 x 0 10 x 0 0625 -	0.0069	

ii) Horizontals =
$$1 \times 1.10 \times 0.10 \times 0.0625 = 0.0068$$

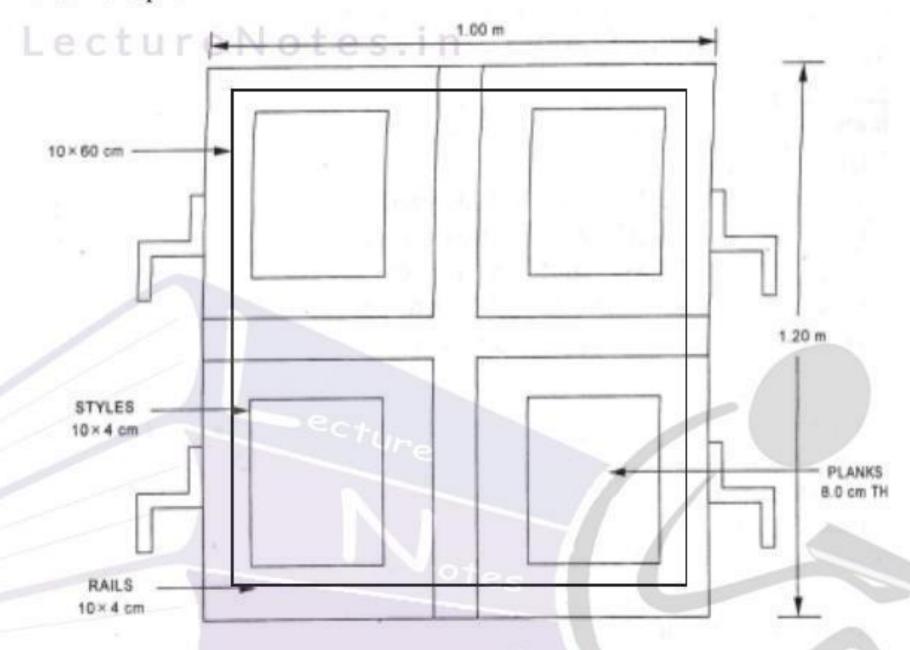
iii) Styles =
$$4x 1.937 x 0.10 x 0.04 = 0.0300$$

iv) Rails = $2x 5x 0.5075 x 0.10 x 0.04 = 0.0020$

iv) Rails =
$$2x 5x 0.5075 x 0.10 x 0.04 = 0.0020$$

v) Planks = $2x 4x 0.364 x 0.3475 x .035 = 0.0354$

 $0.0090 \,\mathrm{m}^3$


S.No.	Description of Item	Quantity	Unit	Rate	Per	Amount
1.	wood Cost	0.009	Cum	25000	cum	2470.00
2.	Butt Hinges	6	Nos	20	each	120.00
3.	Z-hold fasts	6	Nos	10	each	60.00
4.	Cost of labour	2.2	sqm	800	sqm	1760.00
		24 E	95		Total	4410.00

Cost of door per $1m^2 = 4410/2.2 = 2004.54$ say Rs.2010/-

Analysis of Rates

72

5 b) Supply and fixing teak wood fully panneled with 10x 4 cm styles, and 10x4cm rails and 3.5CM TH panels with teak wood fram of 6.25x 10cm size including cost of hold fasts, but hinges and labour charges for fixing window in position and fixing furniture etc., complete for one window of size 1.0x1.2 of area 1.2 sqm.

Requirements:

- i) Verticals = $3x1.2 \times 0.10 \times 0.0625 = 7$ 0.0225
- ii) Horizontals = 3x 1.00 x 0.10 x 0.0625 = 0.0188
- iii) Styles = $4x 2 \times 0.10 \times 0.04 = 0.0160$
- iv) Rails = 4x 2x 0.4062 x 0.10 x 0.04 = 0.0012
- v) Planks = $4 \times 0.3102 \times 0.2102 \times 0.03 = 0.0070$

 $0.0076m^{3}$

S.No.	Description of Item	Quantity	Unit	Rate	Per	Amount
1.	wood Cost	0.0076	Cum	25000	cum	1900.00
2.	Butt Hinges	6	Nos	20	each	120.00
3.	Z-hold fasts	4	Nos	10	each	40.00
4.	Cost of labour	1.2	sqm	1000	sqm	1200.00
		23	5000		Total	3260.00

Cost of door per $1m^2 = 3260/1.2 = 2716.67$ say Rs.2720/-

EXERCISE

Short Answer Questions

- Calculate the Cement contents for the following
 - a) C.C.(1:510) using 40mm H.B.G.Metal for 25m3 work
 - b) Brick work in CM (1:6) using country Bricks for 15m3 of work if 0.38 m³ of CM(1:6) is required for 1m³ of Brick work.
- Calculate the Rates of following materials by using the lead statement given below.

Material	Rate of Source	Lea	d in I	ΚM	Conveyance
111111111111111111111111111111111111111	rate or source	ST	CT	MT	Charge per
Cement	Rs.2100/10 KN (tonn)	3	2	3	Rs.2.5/m ³
Bricks	Rs.850/100nos	1	1	5	Rs.40/1000Nos/Km
Sand	Rs. 15/m ³	4	3	5	Rs.12.00 / km/cum
40mm HBG Metal	Rs. 250/m ³	2	1	2	Rs.7.50/Km/m ³
	Bricks Sand 40mm HBG	Cement Rs.2100/10KN(tonn) Bricks Rs.850/100nos Sand Rs. 15/m³ 40mm HBG Rs. 250/m³	Cement Rs.2100/10KN(tonn) 3 Bricks Rs.850/100nos 1 Sand Rs. 15/m³ 4 40mm HBG Rs. 250/m³ 2	Cement Rs.2100/10KN(tonn) 3 2 Bricks Rs.850/100nos 1 1 Sand Rs. 15/m³ 4 3 40mm HBG Rs. 250/m³ 2 1	Cement Rs.2100/10KN(tonn) 3 2 3 Bricks Rs.850/100nos 1 1 5 Sand Rs. 15/m³ 4 3 5 40mm HBG Rs. 250/m³ 2 1 2

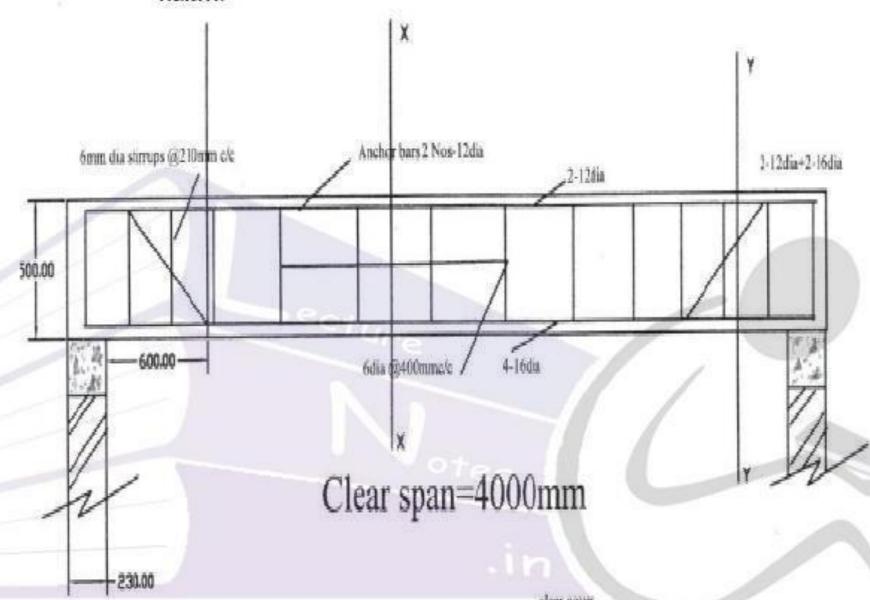
Essay type Questions

- Prepare a data sheet and calculate the cost of the items given below:
- Brick masonry in C.M. (1:6) with country bricks-unit Icum. 600Nos, country bricks.
 - 0.38m3C.M.(1:6)
 - 1.40Nos. Masons
 - 0.7 Nos. Man Mazdoor
 - 2.1 Nos. Woman Mazdoor
 - L.S. Sundries.
- C.C.(1:5:10) using 40mm HBG metal unit 1cum.
 - 0.92m³...... 40mm size HBG metal

0.46m ³	Sand
0.092m3	Cement
0.2 Nos	Mason
1.8 Nos	Man Mazdoor
1.4 Nos	Woman Mazdoo

i) Mason-Rs. 90 per day.

- ii)Man Mazdoor Rs. 70 per day
- iii)Woman Mazdoor Rs. 70 per day.
- iv)Mixing Charges of C.M. Rs. 20=00 Sundries.


Labour charges:

Le	ead Statement of ma	aterials:			per m ³ .
S.No.	Material	Cost at Source Rs. Ps.	Per	Lead in Km	Conveyance Charges per Km
1	40mmHBG metal	210=00	m^3	16	Rs.6=00/m ³
2	Sand	16=00	m^3	18	Rs.3=00/m ³
3	Bricks country	780=00	1000Nos	at site	2000 0000000
4	Cement	2600=00	10KN or 1tonne	at site	**

ESTIMATION OF QUANTITIES OF STEEL & R.C.C. ELEMENTS

Example 1: Prepare the bar bending schedule of the given figure for R.C.C. beam.

500.00

2-12da

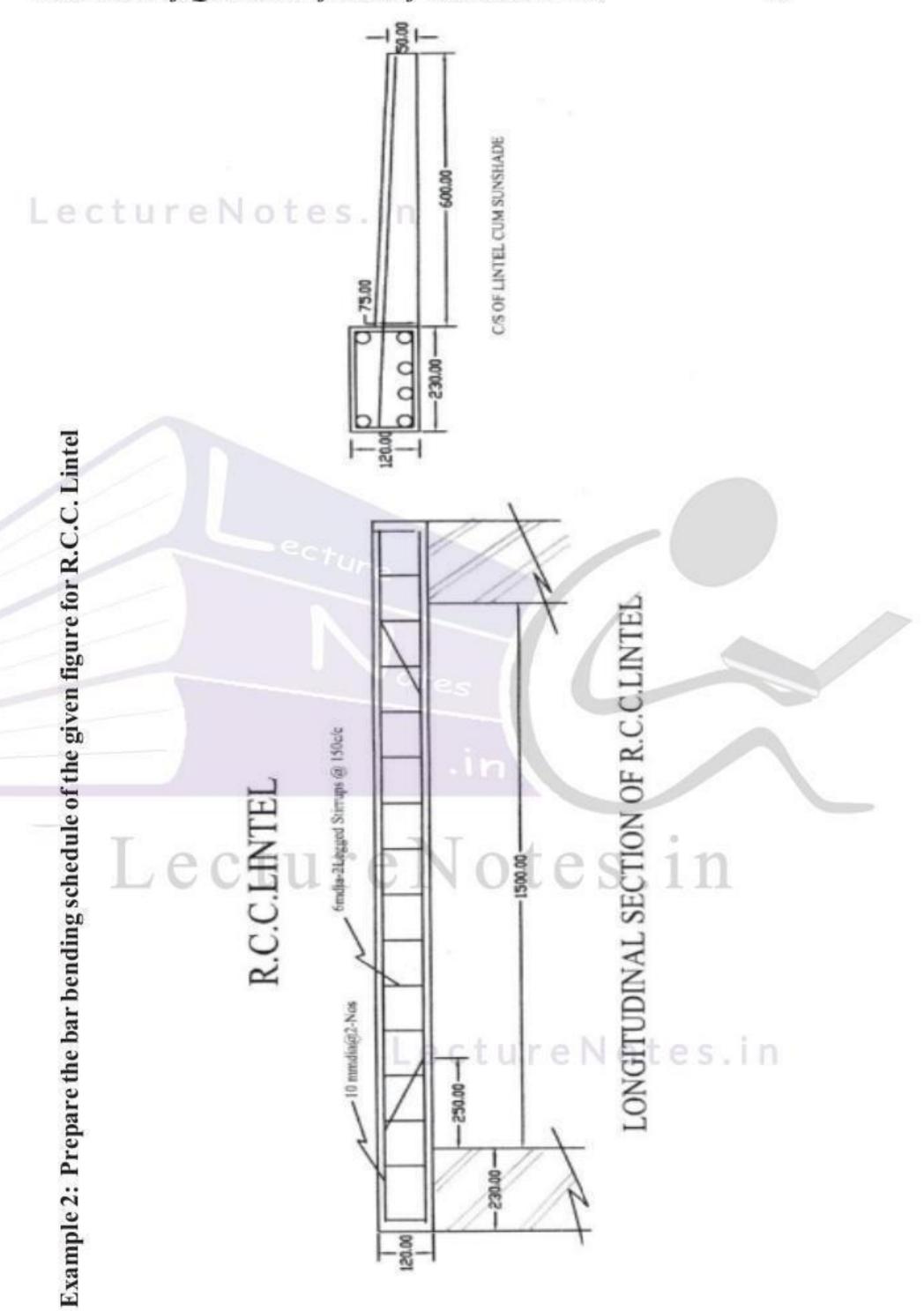
500.00

Section-XX

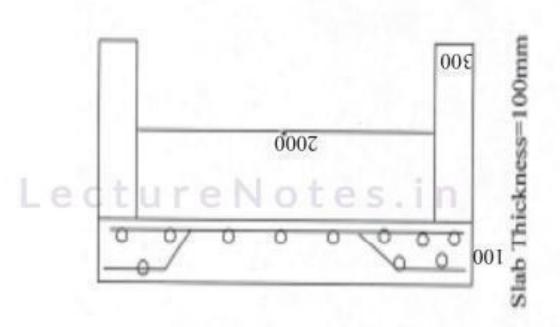
+2-16dia

2-12dia.

416dia-

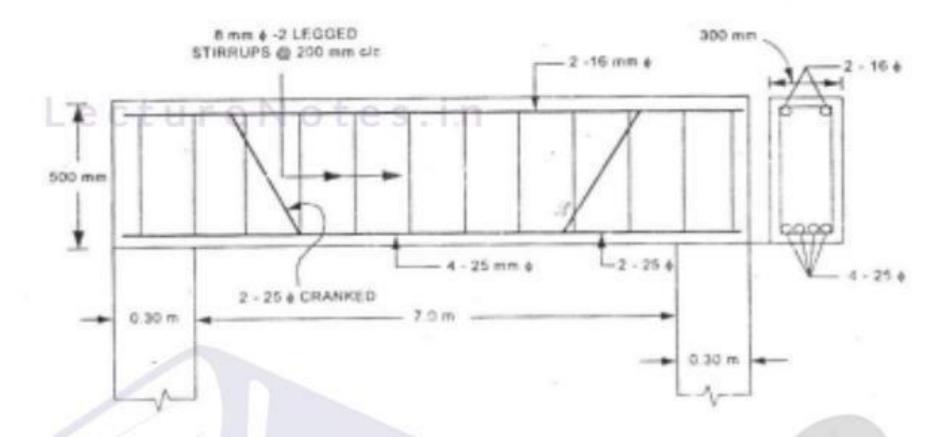

ecture Sp. Wt of Steel 2860 Kg/cum . 111

ectureNotes.in


Section-YY

2-16dia-

15	50 pi	3	E	stimation and	Costing
Total Weight in Kg	1.58x 9.368 = 14.8	$0.89x\ 9.224$ = 8.2	1.58x 10.08 = 15.92	0.22x23.256 = 5.16	
Self weight in kg/m O	$\frac{\pi}{4} \times \left(\frac{16}{1000}\right)^2 \times 7860 = 1.58$	$\frac{\pi}{4} \times \left(\frac{12}{1000}\right)^2 \times 7860$ $\frac{\pi}{6}$ = 0.89	$\frac{\pi}{4} \times \left(\frac{16}{1000}\right)^2 \times 7860$ = 1.58	$\frac{\pi}{4} \times \left(\frac{6}{1000}\right)^2 \times 7860$ = 0.22	-1)x2
Total Length in m	4.684 x 2 =9.368m	4.612 x 2 = 9.224m	5.04×2 = 10.08	1.368x17 = 23.256	No. of stirups = ((798/210)+1)x2 +(2800/400) = 17 Nos
Lengthinm	4396+2x(9x16) = 4684mm = 4.684m	4396+2x(9x12) = 4612mm = 4.612m	4396+2x(9x16)+ 2(0.414x434) = 5043mm = 5.043m Additional length for each crank = 0.414d	2(450+180) + 2x9x6 = 1368mm = 1.368m	No. of stirup: +(2800)
No.	7	2	2	17	
Dia.	7 & C	ture	el ² ote	es.:in	
Shape	main bars 4000+2x230-2x32=4396	Anchor bars 4000+2x230-2x32=4396	Cranked bars 500-2x25-16=434 798 2800	450 0 t e 3	Height = $500-2x25=450$ Width = $230-2x25=180$
Name.		В	A A		



//	E	3	L	sumation and C	Josung
Total Weight in Kg	0.89x 4.252 = 3.78	0.62x4.18 = 2.59	0.89x 4.348 = 1.87	0.22x8.512 = 1.87	
Self weight in kg/m O	$\frac{\pi}{4} \times \left(\frac{12}{1000}\right)^2 \times 7860$ = = 0.89	$\frac{\pi}{4} \times \left(\frac{10}{1000}\right)^2 \times 7860 \text{a} \\ = 0.62$	$\frac{\pi}{4} \times \left(\frac{12}{1000}\right)^2 \times 7860$ = 0.89	$\frac{\pi}{4} \times \left(\frac{6}{1000}\right)^2 \times 7860$ = 0.22	No. of stirups = $((1910/150)+1) = 14$ Nos
Total Length in m	2.126 x 2 = 4.252m	2.09 x 2 = 4.18m	2.174 x 2 = 4.348	0.608x14 = 8.512	ps = ((1910/15
Lengthinm	1910+2x(9x12) = 2126mm = 2.1264m	1910+2x(9x10) = 2090mm = 2.090m	1910+2x(9x12)+ 2(0.414x58) = 2174mm = 2.174m Additional length for each crank = 0.414d	2(70+180) + 2x9x6 = 608mm = 0.608m	No. of stiru
No.	2	2	2	4	
Dia. No.	7 & C	ture	el4ote	es.in	9
Shape	main bars 1500+2x230-2x25=1910	Anchor bars 1500+2x230-2x25=1910	Cranked bars 120-2x25-12=58 455 1000	02 081	Height = $120-2x25=70$ Width = $230-2x25=180$
Name.		J H	Z H H	J	

79				Estimation and Costing
	Total Weight in Kg	0.39x69.7 = 27.53	0.22x66.15 = 14.553	
Lec	Self weight in kg/m	$ \frac{\pi}{4} \times \left(\frac{8}{1000}\right)^2 \times 7860 \frac{2}{0} $ $ = 0.39 $	$\frac{\pi}{4} \times \left(\frac{6}{1000}\right)^2 \times 7860$ $= 0.22$	
	Total Length in m	2.581×27 $= 69.7$	4.41x15 = 66.15	
	Length in m	2410+2x(9x8)+ (0.414x66) = 2581.3mm = 2.581m Additional length for each crank = 0.414d	4.41m	
	Dia. No.	2 C & U T P C = 27	6 180 +1 6 =15	es.in
	Shape	Cranked bars 100-2x13-8=66 2000+2x230-2x25=2410	4000+2x230-2x25=4410	e Notes.in
88	Name.	S	A B	

1) Prepare the Bar bending schedule for the beam shown below.

2) Prepare the Bar bending schedule of a simply supported R.C.C. Lintels from the following specification:

Size of lintel 300mm widex 200mm depth. Main bars in tension zone of Fe 250(grade I) 3 bars of 16mm dia., one bar is cranked through 45° at 170 mm from each end

2 No. anchor bars at top 8mm dia.

Two legged stirrups@150mm c/c of 6mm dia. through out.

Clear span of the lintel is 1150mm.

Bearing on either side is 150mm.

Lecture Notes.in

EARTH WORK CALCULATIONS

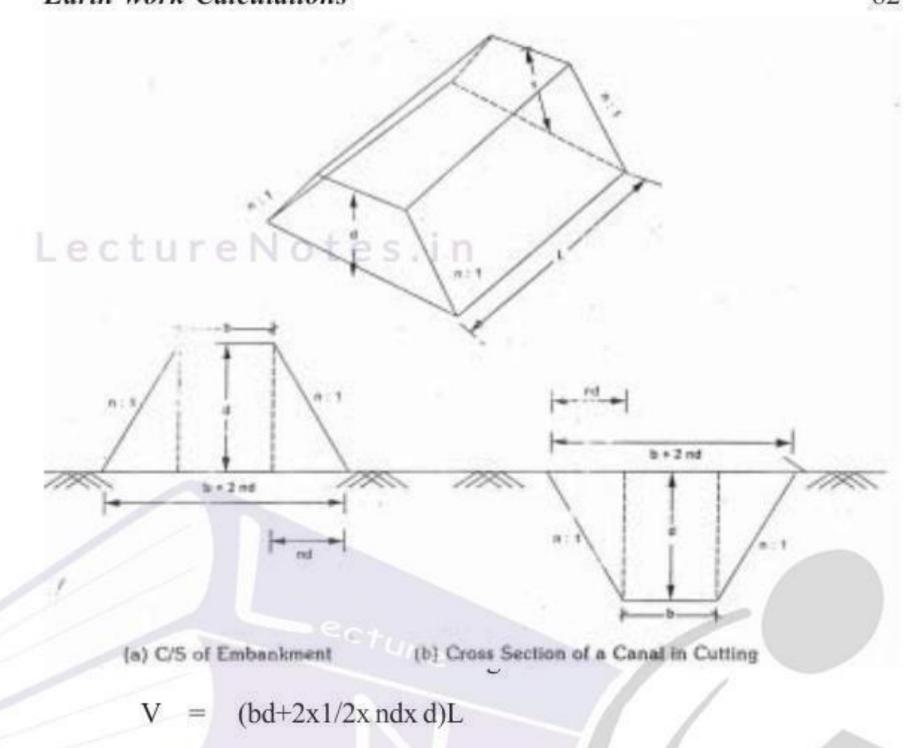
7.1 Introduction: Otes.in

Generally all the Civil Engineering projects like roads, railways, earth dams, canal bunds, buildings etc. involves the earth work. This earth work may be either earth excavation or earth filling or Some times both will get according to the desired shape and level. Basically the volume of earthwork is computed from length, breadth, and depth of excavation or filling.

In this chapter the various methods of calculating the earth work quantities shall be discussed.

7.2 Lead and Lift:

Lead:

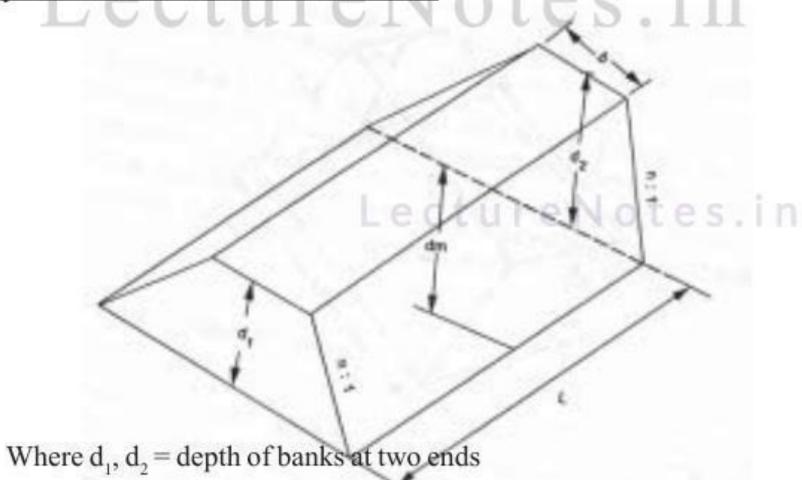

It is the average horizontal distance between the centre of excavation to the centre of deposition. The unit of lead is 50m.

Lift:

It is the average height through which the earth has to be lifted from source to the place of spreading or heaping. The unit of lift is 2.00m for first lift and one extra lift for every 1.0m. for example when earth is to be lifted for 4.5m, Four lifts are to be paid to the contractor.

7.3 Calculation of earth work for Roads:

7.3.1 case 1) volume of earth work in banking or in cutting having "no longitudinal slope".



Case 2:

When the ground is in longitudinal slope or the formation has uniform gradient for a length the earth work may be calculated by the following methods.

1. By Mid Section or Mid ordinate method.

(bd+nd2)L

Mid ordinate (or) Average depth
$$(d_m) = \frac{d_1 + d_2}{2}$$

Area of mid section
$$(Am) = (bd_m + nd_m^2)$$

volume of earth work (v) =
$$A_m x L = (bd_m + nd_m^2) \times L$$

ii) Trepezoidal formula: (for two sections)

In this method also called mean sectional area method

Let A₁ & A₂ be two areas at two ends.

$$A=(bd_1+nd_1^2), A_2=(bd_2+nd_2^2)$$

$$A_{m} = \frac{A_1 + A_2}{2}$$

Volume of earth work (v) = $Am \times L$

iii) Trepezoidal formula for a series of c/s areas at equal intervals.

Let A₁,A₂,A₃.....A_n are the cross sectional areas along L.S of Road 'L" is the distance between two cross sections

The volume of earth work

$$V = L \left[\left(\frac{A_1 + A_n}{2} \right) + (A_2 + A_3 + \dots + A_{n-1}) \right]$$
(or)
$$= \frac{L}{2} \left[(A_1 + A_n) + 2(A_2 + A_3 + \dots + A_{n-1}) \right]$$

$$= \frac{\text{length}}{2} \left[\text{(sum of first and last areas)} + 2(\text{remaing Areas)} \right]$$

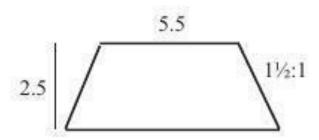
iv) Prismoidal formula for a series of cross sectional areas at equal intervals.

Note: This method is adopted when there is odd number of cross sections.

Volume of earth work

$$V = \frac{L}{3} \left[(A_1 + A_n) + 4(A_2 + A_4 + A_6 + \dots + A_{n-1}) + 2(A_3 + A_5 + \dots + A_{n-2}) \right]$$

=
$$\frac{\text{length}}{3}$$
 (Sum of first and last areas)+4(even areas)+2(odd Areas)]


Earth work Calculations

84

Example 7.1: Find the volume of earth work in embankment of length 12m.

Top width is 5.5m and depth is 2.5m the side slopes ara 11/2:1

Sol: Top width b=5.5m

Volume of earth work V =
$$(bd+nd^2)L$$

= $(5.5 \times 2.5+1.5 \times 2.5^2)12$
= $77.5m^3$

Example 7.2: The depths at two ends of an embankment of road of length 70m are 2m and 2.5m. The formation width and side slopes are 8m and 2:1 respectively. Estimate the Quantity of earth work by

a) Mid Sectional Area (ii) Mean sectional Area method.

Sol: a) b=8m, d1=2m, d2=2.5m, l=70m, n=2

Mean depth
$$d_m = \frac{d_1 + d_2}{2} = \frac{2 + 2.5}{2} = 2.25 \text{m}$$

Mid sectional Area = $Am = bdm + ndm^2 = (8x2.25 + 2x2.25^2)2 = 28.125m^2$ Volume of earth work (V)= $AmxL = 28.125x70 = 1968.75m^3$.

b) Area of c/s at one end $A_1 = bd_1 + nd_1^2 = 8x2 + 2x2^2 = 24m^2$ Area of C/s at other end $A2 = bd_2 + nd_2^2 = 8 \times 2.5 + 2 \times 2.5^2 = 32.5m^2$

Mean Sectional Area (Am) = $\frac{A_1 + A_2}{2} = \frac{24 + 32.5}{2} = 28.25 \text{m}^2$ Volume of earth work (V) = AmxL=28.25x70=1977.5m³.

Example 7.3

The following width of road embank ment is 10m. The side slopes are 2:1 The depth along the centre line road at 50m intervals are 1.25, 1.10, 1.50, 1.20, 1.0,1.10, 1.15m calculate the Quantity of earth work by

- a) Mid sectional rule
- b) Trepezoidal rule
- c) Prismoidal rule
- a) Mid Sectional rule: b=10m, n=2.

Chainage	10 40 00 00 00 00 00 00 00 00 00 00 00 00		Length b/w Chainages	Quantity (m³) A _m ×L	
0	1.25)			80	
	}	1.175	14.51	50	725.56
e 50 u	1.10	otos	T.m.		
ectu	I E IN	1.125	13.78	50	689.06
100	1.15	52744554109	2575 - 600S		2/14/19/00/00
		1.175	14.51	50	725.56
150	1.20	2 2027	12/2020	7222	
		1.10	13.4	50	671.00
200	1.00	1.00	12.70	50	(25.25
		1.02	12.70	50	635.25
250	1.10	1.125	13.78	50	689.06
300	1 15	1.123	13.76	30	009.00
300	1.15	= e_+			

4135.49m3 Total

b) Trepezoidal rule

$$A = bd + nd^2$$

$$A_1 = bd1 + nd_1^2 = 10x 1.25 + 2x 1.252 = 15.625 m^2$$

$$A_2 = bd2 + nd_2^2 = 10x 1.10 + 2x 1.10^2 = 13.42m^2$$

$$A_3 = 10x \ 1.15 + 2.1.15^2 = 14.145m^2$$

$$A_4 = 10x 1.2 + 2x1.2^2 = 14.88m^2$$

$$A_s = 10x 1.0 + 2x 1^2 = 12.0m^2$$
,

$$A_5 = 10x 1.0 + 2x1^2 = 12.0m^2$$
,
 $A_6 = 10 x 1.1 + 2x1.1^2 = 13.42m^2$

$$A_7 = 10x1.15 + 2x1.152 = 14.145 \text{ m}^2$$

Volume of earth work by Trepezoidal rule

$$v = L \left[\left(\frac{A_1 + A_n}{2} \right) + (A_2 + A_3 + \dots A_{n-1}) \right]$$

$$= 50 \left[\left(\frac{15.625 + 14.145}{2} \right) + (13.42 + 14.145 + 14.818 + 12.0 + 13.42) \right]$$

$$= 4137.50 \text{ m}^3$$

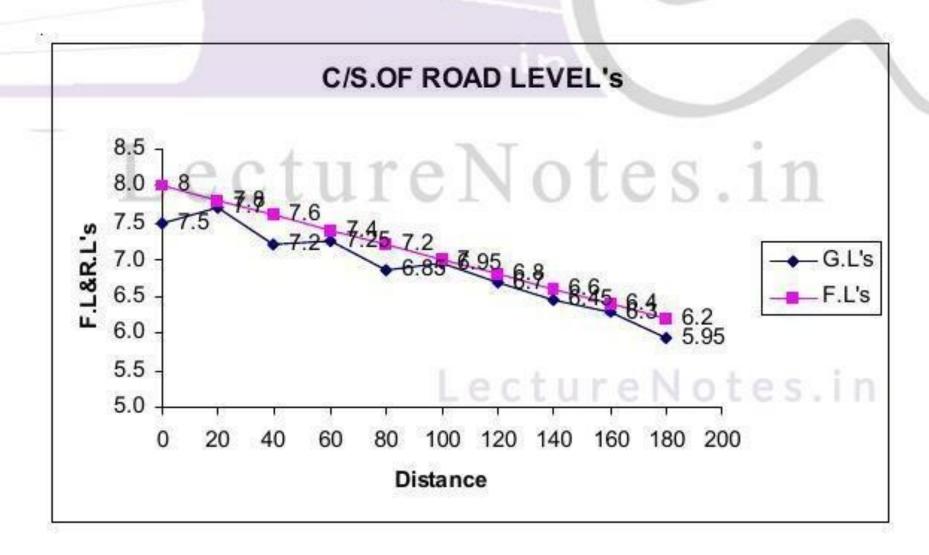
Earth work Calculations

86

c) By Prismoidal rule

$$V = \frac{L}{3} [(A_1 + A_n) + 4(\text{even Areas}) + 2(\text{Odd Areas})]$$

$$= \frac{L}{3} [(A_1 + A_7) + 4(A_2 + A_4 + A_6) + 2(A_3 + A_5)]$$


$$= \frac{50}{3} [(15.625 + 14.145) + 4(13.42 + 14.88 + 13.42) + 2(14.145 + 12)]$$

$$= 4149 \text{ m}^3$$

Example 7.4:- Estimate the Quantity of earth work for a portion of road from the following data

Chainage	0	1	2	3	4	5	6	7	8	9
RL	7.50	7.70	7.50	7.25	6.85	6.95	6.70	6.45	6.30	5.95

The formation level at Chainage 0 is 8.0 and having falling gradient of 1 in 100. The top width is 12m and side slopes 1½ horizontal to 1 vertical assuming the transverse direction is in level calculate the quantity of earth work Take 1 chain = 20m by using trepezoidol & Prismoidol formula.

87

Estimation and Costing

Sol:-

Chainage	Distance	Reduced	Formation	Depth(d) of	Area	of
	Distance	level			Cutting	Embank- ment bd+nd ²	Cutting
e o tu	0	7.50 S	- 8.0	0.50	\$8	6.375	8
1	20	7.70	7.8	0.10		1.275	
2	40	7.50	7.6	0.10		1.215	
3	60	7.25	7.4	0.15		1.839	
4	80	6.85	7.2	0.35		4.38	
5	100	6.95	7.0	0.05		0.63	
6	120	6.70	6.8	0.10		1.215	
7	140	6.45	6.6	015		1.837	
8	160	6.30	6.4	0.10		1.215	
9	180	5.95	6.2	0.25		3.09	
		and the second second second		The second second			100

Trepezoidal formula:

$$V = L \left[\left(\frac{A_1 + A_n}{2} \right) + (A_2 + A_3 + + A_{n-1}) \right]$$

$$=20 \left[\left(\frac{6.375+3.09}{2} \right) + (1.215+1.215+1.837+4.38+0.63+1.215+1.837+1.215 \right]$$

 $= 365.53 \text{m}^3$

Prismoidal formula: Ture Notes 111

$$V = \frac{L}{3} [(A_1 + A_n) + 4(even \ areas) + 2(Odd \ areas)]$$

$$= \frac{L}{3} [(A_1 + A_{10}) + 4(A_2 + A_4 + A_6 + A_8) + 2(A_3 + A_5 + A_7 + A_9)]$$

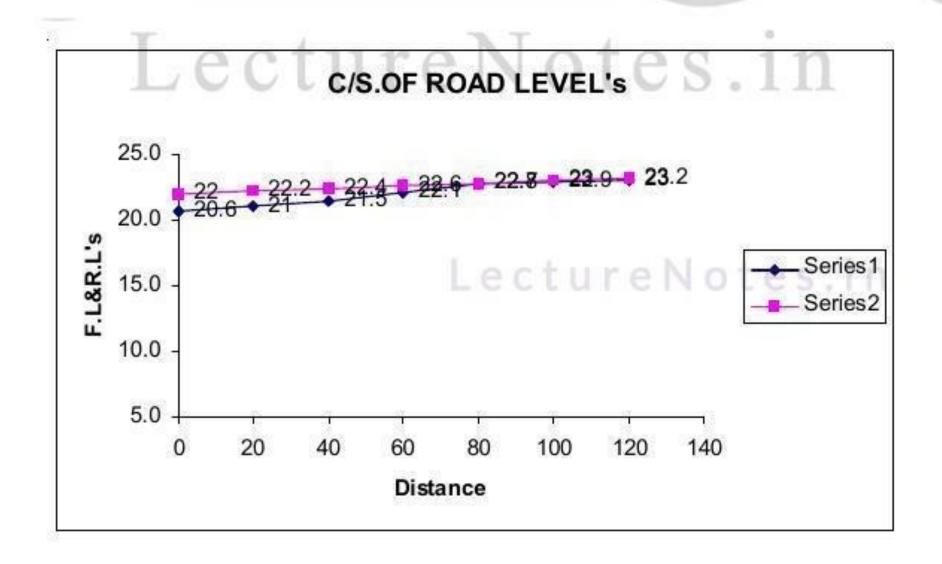
$$= \frac{20}{3} [(6.375 + 3.09 + 4(1.215 + 1.837 + 0.63 + 1.837) + 2(1.215 + 4.38 + 1.815 + 1.215)]$$

$$= 317.27 \text{ m}^3$$

Earth work Calculations

88

Example 7.5:- The road has the following data


Chainage	0	20	40	60	80	100	120
RL of Ground	20.6	21.0	21.5	22.1	22.7	22.9	23.0

The formation level at chainage zero is 22.0 and having a rising gradient of 1 in 100 the top width is 12.0m and side slopes are 1½:1 Assuming the transverse direction is in level. calculate the quantity of earth work by

a) Trepezoidal formula

b) Prismoldal formula

Chainage Distance	Reduced	Formation	Depth	(d)of	Area	of
Chanage Distance	level	Level	Embark- ment	Cut- ting	Embark- ment	Cutting
0	20.6	22.0	1.40		19.74	
20	21.0	22.2	1.20		16.56	
40	21.5	22.4	0.90		12.01	7
60	22.1	22.6	0.50		6.375	
80	22.7	22.8	0.10		1.215	
100	22.9	23.0	0.10		1.215	
120	23.0	23.2	0.20		2.460	
				The same		

a) Trepezoidal formula:

Vol of earth work in embankment

$$V = L \left[\left(\frac{A_1 + A_n}{2} \right) + (A_2 + A_3 + \dots + A_{n-1}) \right]$$

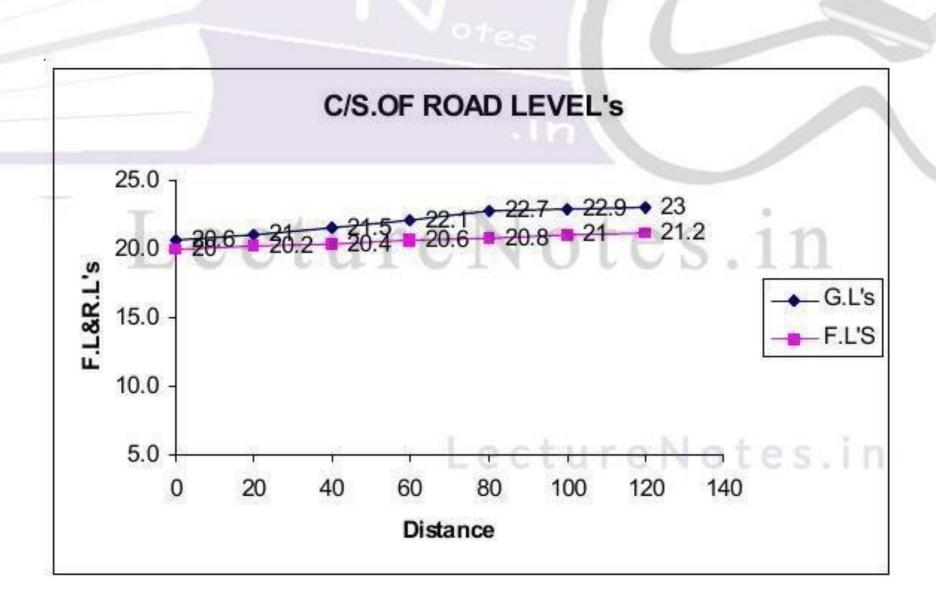
$$= 20 \left[\left(\frac{19.74 + 2.46}{2} \right) + (16.56 + 12.01 + 6.375 + 1.215 + 1.215) \right]$$

$$= 969.5 \text{ m}^3$$

b) Prismoidal formula

$$V = \frac{L}{3} [(A_1 + A_n) + 4(\text{even Areas}) + 2(\text{Odd Areas})]$$

$$= \frac{20}{3} [(19.74 + 2.46) + 4(16.56 + 6.325 + 1.2 + 5) + 2(12.01 + 1.215)]$$


$$= 968.33 \text{m}^3$$

LectureNotes.in

Lecture Notes.in

Example 7.6:-From the above problem if the formation level at 0th chainage in 20m. Calculate the volume of earth work by using the formulas?

Chainage	Reduced	Formation	Depth ((d)of	Area	of
	level	Level	Embank- ment	Cutting	Embank- ment	Cutting bd+nd²
ect ₀ ure 20.60t		€20.00	(Case)	0.60		7.740
20	21.00	20.20	(144)	0.80	-	10.56
40	21.50	20.40		1.10		15.015
60	22.10	20.60		1.50		21.375
80	22.70	20.80		1.90		28.215
100	22.90	21.00		1.90		28.215
120	23.00	21.20		1.80		26.460
	- e					. y

a) Trepezoidal formula:

Vol.of earth work in cutting

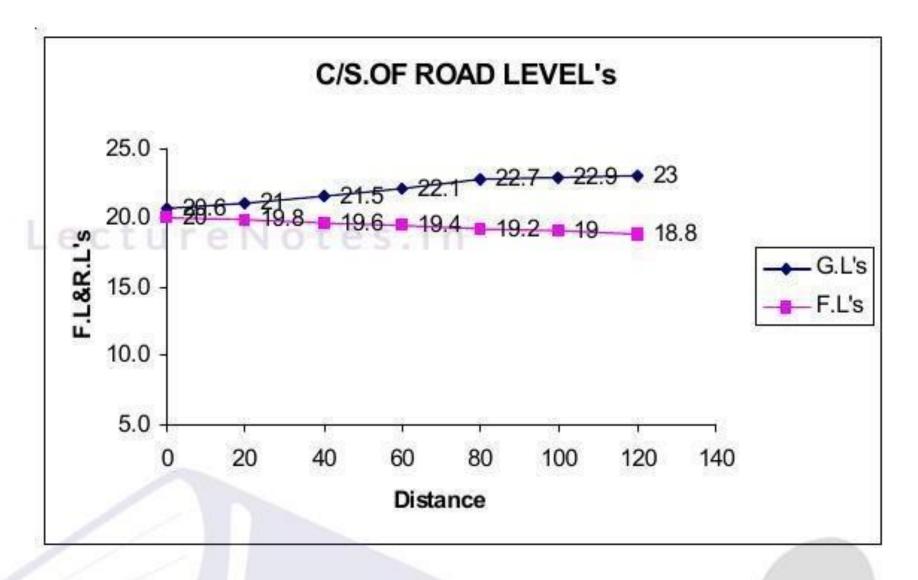
$$V = L \left[\left(\frac{A_1 + A_n}{2} \right) + (A_2 + A_3 + \dots + A_{n-1}) \right]$$

$$L = C \left[20 \left[\left(\frac{7.74 + 26.46}{2} \right) + (10.56 + 15.015 + 21.375 + 28.215 + 28.215) \right]$$

$$= 2409.6 \text{ m}^3$$

b) Prismoidal formulae:

$$V = \frac{L}{3} [(A_1 + A_n) + 4(even \, areas) + 2(Odd \, areas)]$$


$$= \frac{L}{3} [(A_1 + A_7) + 4(A_2 + A_4 + A_6) + 2(A_3 + A_5)]$$

$$= \frac{20}{3} [(7.74 + 26.46) + 4(10.56 + 21.375 + 28.215) + 2(15.015 + 28.215)]$$

$$= 2408.4 \, \text{m}^3$$

Example 7.7:-From the same above problem 7.6 if the gradient is in 100 falling calculate the quantity of earth work by using the formulas

Chainage	Reduced	Formation	Depth	(d)of	Area	of
Le	level	The state of the s	Embank- ment	Cut- ting	Embank- ment	Cutting
0	20.60	20.00		0.60		7.74
20	21.00	19.8	5.5	1.20		16.56
40	21.50	19.6	1000	1.90		28.215
60	22.10	19.4	e <u>c.</u> t ı	2.70	lote	43.335
80	22.70	19.20		3.50	(**	60.375
100	22.90	19.0		3.90		69.615
120	23.00	18.80		4.20		76.86
			35			

a) Trepezoidol formulae:

Vol. of earth work in cutting

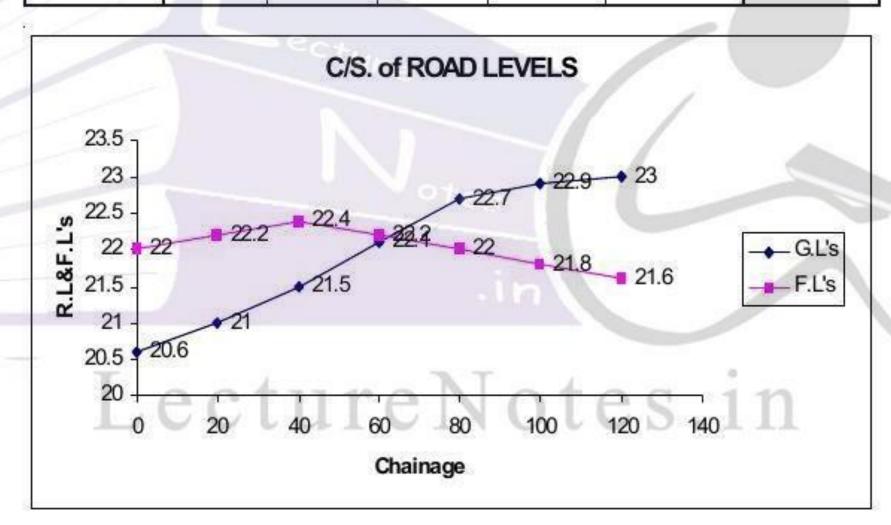
$$V = L \left[\left(\frac{A_1 + A_n}{2} \right) + (A_2 + A_3 + \dots + A_{n-1}) \right]$$

$$= 20 \left[\left(\frac{7.74 + 76.86}{2} \right) + (16.56 + 28.215 + 43.335 + 60.375 + 69.615) \right]$$

Lecture Notes.in b) Prismoidal formulae:

 $= 5208 \text{ m}^3$

$$V = \frac{L}{3} [(A1 + An) + 4(even areas) + 2(Odd areas)]$$


$$= \frac{L}{3} [(A_1 + A_7) + 4(A_2 + A_4 + A_6) + 2(A_3 + A_5)]$$

$$= \frac{20}{3} [(7.74 + 76.86) + 4(16.56 + 43.335 + 69.615) + 2(28.215 + 60.375)]$$

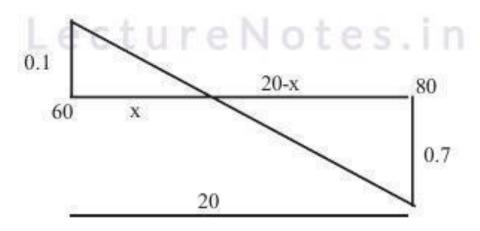
$$= 5198.8 \text{ m}^3$$

Example 7.8:- From the problem 7.5 if the gradient is 1 in 100 raising upto 40th chainage and 1 in 100 falling ragient from 40th Chainage to 120th chainage. Calculate the vol of earth work by using the formulas.

Chainage	R.L.	F.L.	Depth	(d)of.	Are	a of .
(m) ectu	e No	tes	Embank- ment	Cutting	Embank ment bd+nd²	Cutting bd+nd ²
0	20.6	22.0	1.40	3 8	19.74	
20	21.0	22.20	1.20		16.56	
40	21.5	22.40	0.90		12.01	
60	22.1	22.20	0.10		1.215	
62.5			0.00	0.00	0.000	0.000
80	22.7	22.00		0.70	10000745700	9.135
100	22.9	21.80		1.10		15.015
120	23.0	21.60		1.40		19.74

From similer triangel properties

$$\frac{x}{0.1} = \frac{20 - x}{0.7}$$


$$0.7x = (20-x)0.1$$

$$0.7x = 2-0.1x$$

$$0.7x+0.1x = 2$$

$$0.8x = 2$$

$$x = \frac{2}{0.8} = \frac{20}{8} = 2.5$$

Earth work Calculations

94

vol of earth work in embankment

Chainage	0	20	20 40		62.5	
Area	19.74	16.56	12.01	1.215	0.00	

here the intervals are not equal so we have to take the seperate volumes from oth chainage to 60th chainage and 60th chainage to 62.5 chainage

$$V = Vol(0-60) + vol(60-62.5)$$

$$= 20 \left[\left(\frac{19.74 + 1.215}{2} \right) + (16.56 + 12.01) \right] + 2.5 \left[\frac{1.215 + 0.00}{2} \right]$$

$$= 782.46 \text{m}^3$$

By Prismoidal

$$V = \frac{20}{3} [(19.74 + 1.215) + 4 \times 16.56 + 2 \times 12.01] + \frac{2.5}{3} [(1.215 + 0.00)]$$

= 742.44 m³

Vol of earth work in cutting

Chainage	62.5	80	100	120
Area	0.00	9.135	15.015	19.74

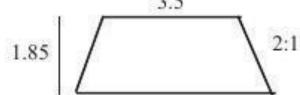
Volume (v) = vol (62.5-80)+Vol (80-120)

By Tripezoidal formula

$$V = 17.5 \left[\frac{0+9.135}{2} \right] + 20 \left[\left(\frac{9.135+19.74}{2} \right) + 15.015 \right]$$

$$= 668.98 \text{m}^3$$

By Prismoidal


$$v = \frac{17.5}{3} [0.9 + 135] + \frac{20}{3} [(9.135 + 19.74) + 4 \times 15.015]$$

$$= 646.18 \text{ m}^3$$

EXERCISE

Short Answer Questions

- 1. State the following formulae with usual notation
 - a) Prismoidal formula
 - b) Trepezoidal formula
- 2. For an embankment 90m long of uniform gradient when the height of bank is 2.4m at one end and 1.8m at the other end the width of embankment at top is 8m and its side slopes 2 vertical to 1 Horizontal calculate the quantity of earth work by a) Mid Sectional area method b) Mean sectional area method.
- Find the earthwork in embankment between 5/2km to 5/5km of the proposed road whose c/s is given below.

Essay type questions

1. The road has the following data

Chainage in m	0 =	30	60	90	120
G.L. in m	25.8	26.5	27.2	28.1	28.5

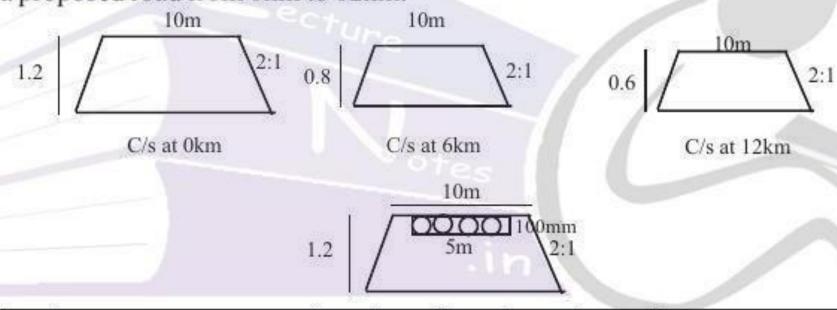
The Formation level at chinage zero is 28 and having the rising gradient of 1 in 100 the top width is 10m and the side slopes are 1½ horizontal to 1 vertical Assuming transverse slope is level calculate the volume of earth work.

2. The reduced level of ground along the centre line of a proposed road from chaining 0 to 6 are given below. The formation level at '0' chaining is 10.00 and the road is in down ward gradient of 1 in 100 formation width of road is 10m and side slopes are 2:1 for both banking and cutting. Length of chain is 20m calculate the quantity of earth work required by a) Trepezoidal rule b) Prismoidal rule.

Chainage	0	1	2	3	4	5	6
R L of ground	8.0	7.8	7.6	7.3	6.9	6.2	6.5

12100 m3

DETAILED ESTIMATES


A) Gravel Road Otes. in

A gravel road comprising of a gravel of thickness 100mm compacted thickness and compacted by hand roller. A gravel is placed over an earthern formation which is compacted by a 2 tonne roller.

The estimate of gravel road consists of determining the following quantities.

- i) Earth work excavation and depositing on bank and compaction
- ii) collection of gravel
- iii) spreading compacting gravel to OMC

Example 8.1:- Find the estamation of a gravel road for the fig shown below. for a proposed road from 0km to 12km.

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation			
1	a) Earth work excavation at intial lead and lift of soil for f holes etc.		_			CS	. 111			
	Area of C/s at 0 kr Area of C/s at 6 Kr Area of C/s. at 12 k	n (A2)	= 10x	(0.8+	2x0.8 ²	= 9.28	m^2			
	Vol of earth work = $600 \left[\left(\frac{14.88 + 6.72}{2} \right) + 9.28 \right] = 12048 \text{m}3$									
	b) Add extra for pits & pot holes LS = 52m3									

Deduct for gravel = $1 \times 1200 \times 5 \times 0.1 = 600 \text{ m}^3$ Net Earth work = $12100-600=11,500\text{m}^3$

Total

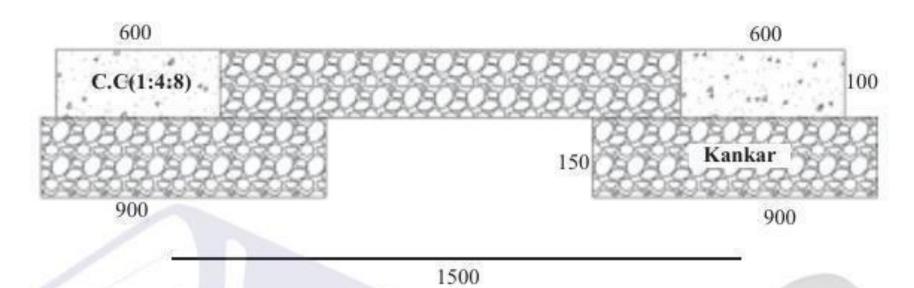
2.	Collection of gravel in- cluding cost & convey- ance etc complete 50% allowance is given for OMC compaction.	1	1200	5.00	0.15	900m ³
e 30	Spreading of gravel and watering	51	1200	5.00		6000m ²
4.	Un forcean items @2%					L.S.
5.	Tools and plant @1%					L.S
6.	P.S. and continsecis @ 4%					L.S

Cement concrete road

C.C. road is laid over an existing W.B.M road, In certain cases. It is laid over a prepared sub grade and a base course is provided. The concrete used for roads is M15 grade using 20mm H.B.G. metal while for base course a concrete of 1:4:8 using 40mm HBGmetal the stages of Estimations of a C.C. road is

- a) Earth work excavation and deposting on the bank
- b) Cement concrete (1:4:8) for base course
- c) Cement concrete (1:2:8) for wearing course.

Example 8.2:- Calculation for the estimation of a C.C.road for a length of 100m and width of C.C.road is 3.50m with 100mm thickness of earh layer.

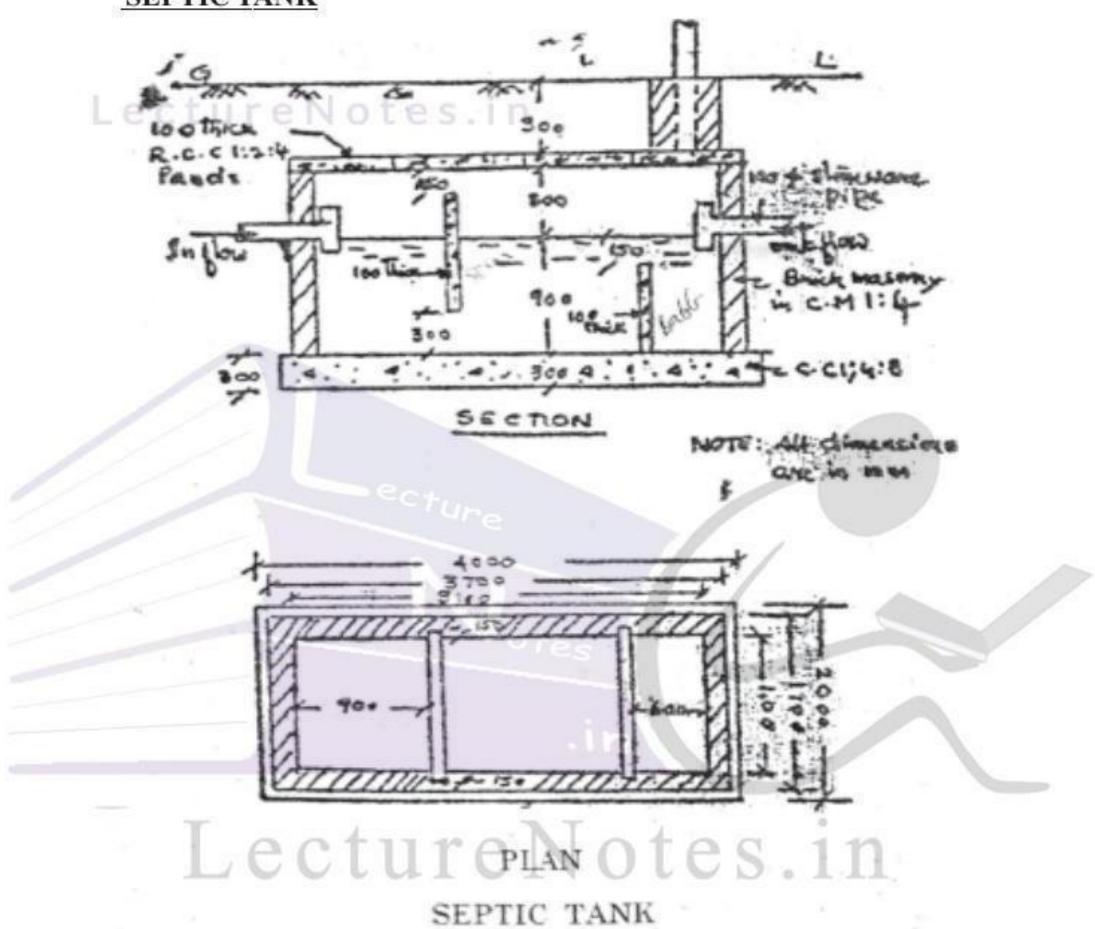

S.No	. Particulars of Items	No.	L	В	Н	Q Explanation
1	C.C.(1:4:8) for base course including cost and conveyance of all materials at site machine mixing, laying curing etc.	1	100 L e	3.5 c t	0.1 u r (35. cum e Notes.in
2 3 4 5	C.C.(1:2:4) for pavement Provision for mastic pads Unforcean items @2% Petty supervision @4%	1	100	3.5	0.1	JScum L.S. L.S. L.S

Detailed Estimates

98

Example 8.3:- Prepare an estimate for 1 Km length of C.C. track or the fig shown below.

LectureNotes.in


ecture

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
1 2.	C.C.(1:2:4) in tracks including laying laying of kankar	2	1000	0.6	0.1	120m³	
1900	(for loose thickness increase with $33\frac{1}{3}\%$)	1 10	_ T	T.	1	00	in
	a) in between C.Ctracks	1	1000	0.9	0.133	120	. 111
	b) under C.C.tracks	2	1000	0.9	0.20	360 480 m	13

Lecture Notes.in

Example 8.4:- Calculate the quantities of different items of the figure shown in below

SEPTIC TANK

Lecture Notes.in

Detailed Estimates 100

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
1	Earth work excation upto						
	GL.	1	4.0	2.0	1.9	15.2m ³	
2.	C.C. (1:4:8)bed	1	4.0	2.0	0.3	2.4m ³	
3.	Brick masonary in CM			5.3504000	0.10 M/109	3.000-3.000-0.00	
. е	1:4 for side walls 3.7 1.7	e s .	ın				
	Long wall short wall						
	method						
	Long wall	2	3.7	0.3	1.2	2.664	
	Shortwalls	2	1.1	0.3	1.2	0.792	
The state of the s	(or)				Total	3.456	
	centre line method						
	3.4	t_{U_I}	'e				
	1.4						
-	total centre line length	1	9.6	0.3	1.2	3.456	
	(3400+1400)2=9600			es			
4	R.C.C.(1:2:4) using				D.		
	20mm HBG metal			s0			
	a) R.C.C slab		3.70	1.70	0.1	0.629	
	b) Baffle wall		1.40	0.1	0.75	0.105	
	c) Scum board	r	1.40	0.1	0.75	0.105	.111
					Total	0.839	
5.	Plastering with CM(1:4) with 20mm th						
	a) Inner surface of septic						
	tank		8.40		1.2	10.08	(3.1+1.1)2=8.4
	b) flooring		3.1	1.1	u r	3.41	otes'.in
	c) Sides of Scum board	1x2	1.1	202	0.75	1.65	
	d) Top and bottom	1x2	1.1	0.1		0.22	
	e) sides of baffle wall	1x2	1.0	**	0.75	1.65	
	f) top of baffle wall	1x1	1.0	0.1		0.1	
	Deduct for Pipe openings Total (net) Plastering	2	$\frac{\pi}{4}$ ×(0.1)	2	Total	0.0157 17.10	•

Estimation and Costing


S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
6. e	a) Earth filling with excavated soil around the brick wall 4.0 2.0 centre line method 3.85	s.	n				
	Total Centre line length= (1.85+3.85)2=11.4 b) over R.C.C. pannels	1	11.4 3.70	0.15	1.30	2.223 1.1887	
	(neglecting the space for venti pipe footing)	1	3.70	1.70	Total	4.11	
7	supply fixing of steel grills including labour for fabrication @ 750N/m³	1	0.839	x750=	62925N	62.92 Kgs	
8	Provision of 100mm dia inlet and out let tees	1x2	-c-+	25		2Nos	
9.	Provision of A.C. ventilating shaft 3m hight duly embed-			.iir			
10	ded in b/w at bottom	1x1			1 No	1 No	
10 11	Provision for A.C.cowl for ventilating pipe Unforcean itsm@2x	1x1	el	IC	1nos L.S	l No L.S	.in
12	P.S.& contingencies @4%				L.S	L.S	

LectureNotes.in

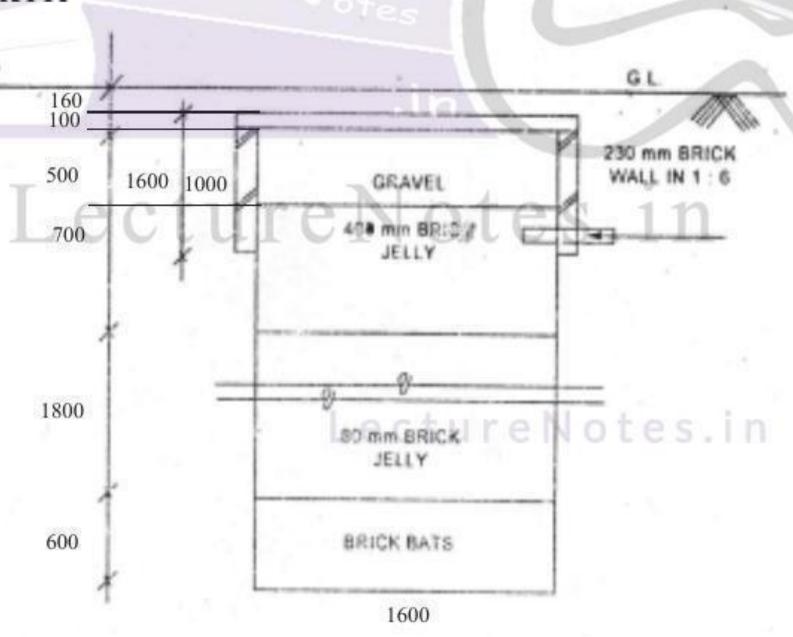
Detailed Estimates 102

Example 8.5:- Calculate the quantities of different items of the figure shown in below

SEPTIK TANK

Estimation and Costing

103				L	sumai	ion ana Costin
S.No. Particulars of	Items No.	L	В	Н	Q	Explanation
Earth work excava GL. C.C.(1:4:8) bed for foundation Brick masonary in	1 1	4.60 4.6	2.10	3.1 0.30	29.95 2.898	
for side walls a) Upto first step (4 4300						
centre line method	1400	10.60	0.40	1.20	5.088	
total centre line le =(3900+1400)2=1 b) from Ist to II ste	10600) _{o t}	2.5			
300	1600		.ir			
Centre line metho	tur (eľ	10	t	es	.in
Total centre line le (3800+1300)2=10. Total Brick N 4. R.C.C.(1:2:4) usir	200 1 Masonry	10.20 = 5.	0.3 088+3	1.20 672 =	3.672 8.76	tes.in
HBGmetal a) RCC roof slab	1	4.10	1.60	0.1	0.656	(Assure projection
b) Baffle wall c) 8cum ward	1 1	1.20 1.20	0.10 0.10	1.80	1 1	100mm inside the
	500	-0. Jan. 100		Total	1.124	


Detailed Estimates 104

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
5.	Plastering with CM(1:4) with 20mm thick a) Inner surface of septic	1	9.0	22	2.4	21.6	L=2(3.5+1.0)=9.0
0	tank	2.5	i.n.	0.400640			
- 0	b) flooring	P 6	3.5	1.0	257575 124572	3.15	
	c) sides of scum board	1x2	1.0	1014 1016(50)	2.1	4.2	
	d) Bottom of scum board	1	1.0	0.1		0.1	
	e) sides of baffle wall	1x2	1.0		1.8	3.6	
	f) Top of baffle wall g) deduction for Pipe	1	1.0	0.1	25 3	0.10	
	opening	2	$\frac{\pi}{4}$ ×(0.1) Net	² Plaste	ring=	-0.015 33.08	W 32
6.	Earth filling with excavated soil around the brick work a) upto first step 4750 2250 4450	t si		1.60			
	Total length=(4.45+1.95)2 =12.8 b) from 1st step to up to Ground Level	. 1 ° 12.80	e]	1.2	o t	e S	in
	250 2100		L	1x2	ur	e N	otes.in
	4350			1x1			
	1850			1x1			
	Total Centre Line length =2(4.35+1.85)=12.4	1	12.40	0.25	1.60	4.96	

S.No.	. Particulars of Items	No.	L	В	Н	Q	Explanation
7	Supply & fixing of steel grills including labour for fabrication @750 N/m³	1				L.S	
8 e (Provision of 100mm dia inlet & outlet Tees	1x2	'n			2Nos	
9	Provision of A.C. cowl for ventilating shaft 3 mt						
	height duly embeded below at bottom	1x1			7.5	1No	
10	Provision of A.C. cowl for ventilating pipe	1x1		55.5		1 No	
11	Unforceen items@2x					L.S	
12	R.S.& Contingeties @4%					L.S	

Example 8.6:- Calculate the quantities of different items of the figure shown in below

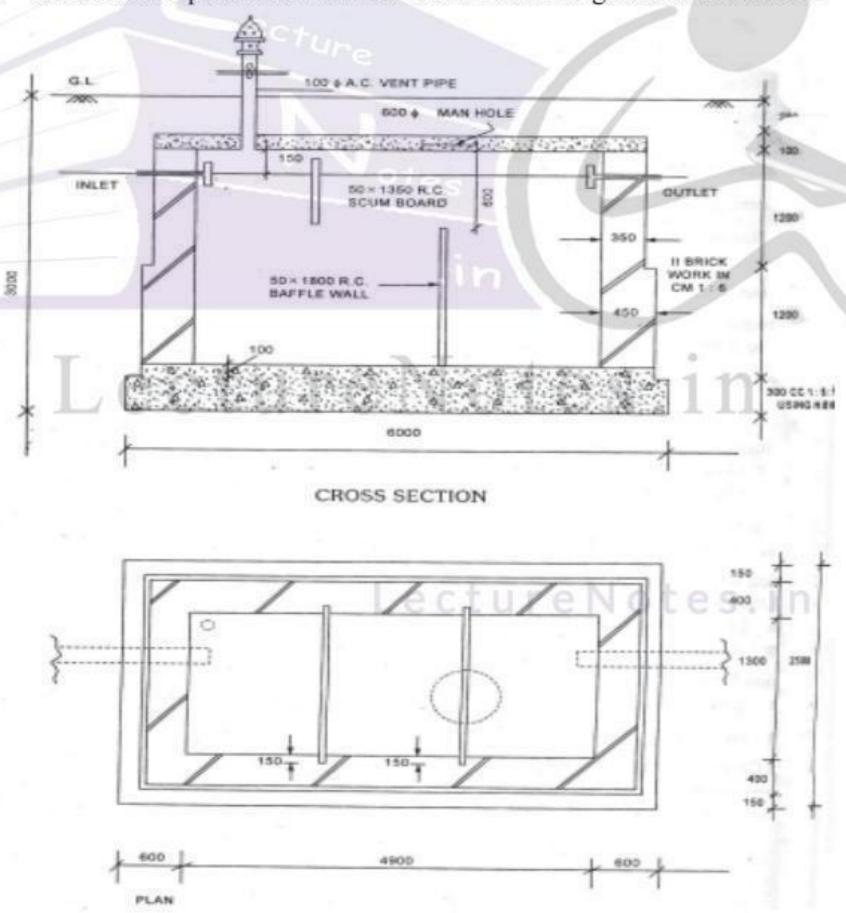
SOAK PIT

Detailed Estimates 106

S.No	. Particulars of Items	No.	L	В	Н	Q	Explanation
1. e	Earth work excavation in non cohesive soils like sandy soils with an intial lead & lift a) Soak pit b) side brick wall Brick work in CM (1:5) with country bricks including cost and	e F -	$\frac{\pi}{4} X$ $\frac{\pi}{4} (2.06)$	1.6 ²	3.86 1.16 Total	7.76 1.53 9.29	
	conveyance etc complete alround the pit 230 1600 230 centre line method	1 2	(2.06	2-1.6	0.9	1.19	
	1830	1	π(1.83	0.23	0.9	1.19	
3.	supply & packing including cost & conveyance a) Brick bats b) 80mm brick jelly c)40mm brick jelly d) gravel brick jelly	1 1 1 1	$\frac{\frac{\pi}{4}}{\frac{\pi}{4}} \times \frac{\pi}{4}$	1 .6 ² 1 .6 ² 1 .6 ² 1 .6 ²		1.2 3.62 1.4 1.00	otes.ir
4.	R.C.C.(1:2:4) slab panels (precast) using 20mm HBG metal inlcuidng cost & conveyance	1	$\frac{\pi}{4} \times 2$.06 ²	0.1	0.33	
5.	Filling with clay soil on top of pit upto GL.	1	$\frac{\pi}{4} \times 2$	06 ²	0.16	0.53	

$$\frac{\pi}{4} \times 1.6^2$$

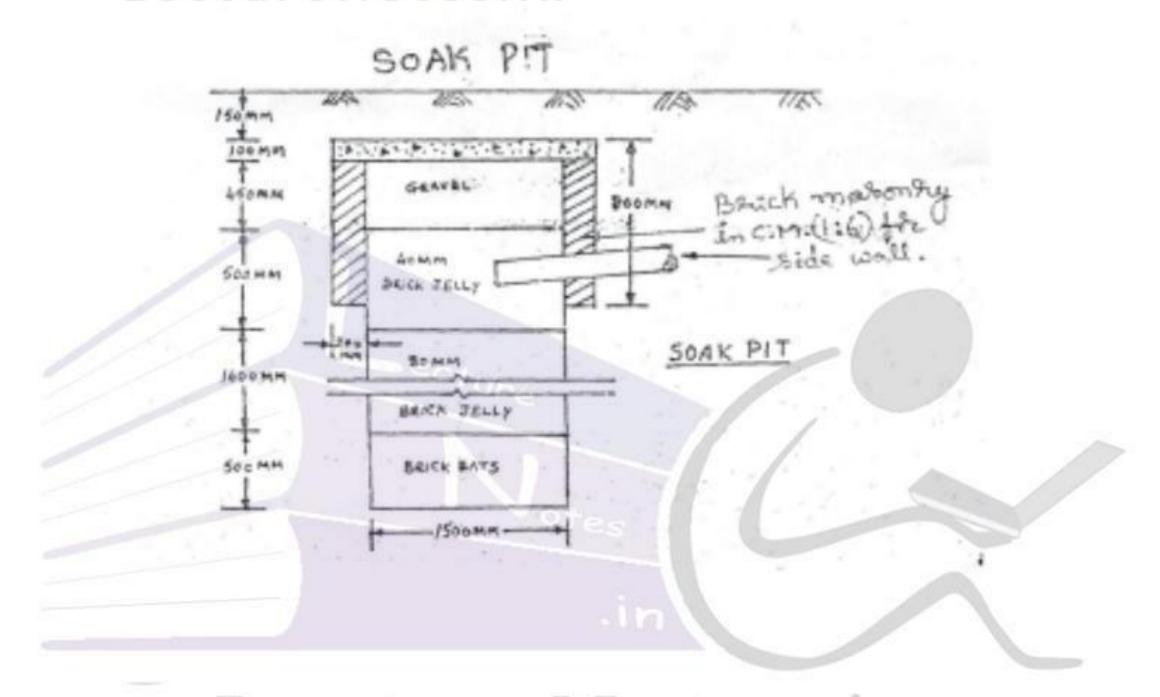
$$\frac{\pi}{4} \times 1.6^2$$


107

Estimation and Costing

S.No	Particulars of Items	No.	L	В	Н	Q	Explanation
7. e (Laying of joining 100mm popies including earth work Encavation, sand filling packing joints etc complets	S.	in				
	L=12+0.23+1.6/2	1	13.03			13.03	RM
8	Unforcean items of work@2%	1				LS	
9	Petty supervision and contingencies @4%	1	222			LS	

EXERCISE


1. Calculate the quantities of various elements of the figure shown in below.

Detailed Estimates 108

Prepare a detailed estimate for following items of work of "SOAKPIT" from the given figure

- a) 800mm size brick jelly.
- b) 40mm size brick jelly.
- c) Gravel,
- d) Brick masonry in C.M. (1:6):

LectureNotes.in

Lecture Notes.in

APPENDEX

Quantities of Materials and their Costs:

The includes the quantities of various materials for unit quantity of an item followed by the specification and costs of various materilas, the cost includes first cost, freight, transportation and insurance charges.

Labour and Cost: OTES. In

This includes the number and wages of different categories of labourers. Skilled, unskilled etc.,

Cost of Equipment:

For big projects it is necessary to use special type of tools and plants like special type of mixed concrete transport vehicle called triping wagons, cranes etc. in order to purchase such tools and plants and amount of 2 to 3% of estimated cost is provided in the estimate.

Over head Charges:

This includes office rent, depreciation of equipments, salaies of office staff, postage, lighting travelling allowances, telephone bills, the contractor may provide small tooks like ladders, trowels, ropes etc., fo his workmen. Here an amount of 5% of estimated cost is provided towards overhead charges.

Profit:

Generally 105 of estimated cost is considered for contractor's profit after allowing the charges of equipments and establishments. For small job s 15% and large works 8% profit is considered.

Standard Data Book: UTC | OTC S . 111

This book gives the quantities of materials and labour required for unit item of work.

Standard scheduled of rates:

The rates of materials and wages of laboures are fixed by superintending Engineer for this cicle for evey year. And these rates as approved by board of enginees. The S.S.R. for 2002-2003 is presented in the last pages.

Water Charges:

For drinking and for work,s the arrangement of water is done either by sinking tube well or by giving connection to the work site from corporation by a pipe line. Centrally 1% of estimated.

Appendex 110

Task or out-turn work:

This is the quantity of work which can be done by an atisan for trade working of 8 hours. Although the task is different from person to person according to their physical and mental abilities, the average task or out turn work is taken into consideration for preparing rate per unit item. Task does not mean that the quantity of work done by one oner labour. But other laboureso helpers also be engaged to complete the given task.

For example a manson can prepare 2.0m3 of cement concrete per day provided he is helped by two mazdoors to carry and mix the ingredients.

The following may be taken as approximate quantity of work out-turn work or task for an average artisan per day.

Sundries:

A lumpsum amount is generally provided in the analysis of rates, towards purchase of certain tools and other pretty items which cannot be accounted in detail. an amount of $2\frac{1}{2}$ to 3% of labour cost is provided for this purpose.

TABLE

No.	Description of work	Quantity of work per day (8 hours of day)
1.	Earth work excavation in foundation, trenches in ordinary soils, lead 50m and lift up to 1.5m	2.75 m ³ /Mazd
2.	Earth work in excavation in foundation trenches	2.10m ³ /Mazd
3.	in hard soils, lead 50m and lift upto 1.5m Earth work in soft or decomposed rock by	s.in
	blasting lead up to 50m and lift upto 1.5m	0.55m ³ /MaZd
4.	Sand filling in plinth, consolidation and dressend	4.0m ³ /Mazd
5.	Single layer brick flat soling including ramming, dresing etc.	9.0Sqm/Mazd
6.	Lime concrete in foundation	10m³/Mason
7.	C.C.	4.0m ³ /Mason
8.	R.C.C. (1:2:4)	3.25m ³ /Mason
9.	Brick work in foundation and plinth	1.40m³/Mason
10	Brick work in super structure (G.F)	1.25m3/Mason
11	Half brick work in partition wall	7.00Sqm/ Mason

111	Lsun	ianon ana Cosung
12	Bricks in plain arches	1.0m ³ /Mason
13	Reinforced brick work in slabs	1.00m ³ /Mason
14	2.5 cm C.c.D. P.C.	12.5 m ² /Mason
15	2.0cm D.P.C. with C.M.	20Sqm/Mason
16	R.R.Masonry foundation & Plinth	1.00cm/Mason
17	R.R.Masonry in superstructure	0.9m3/Mason
18	Ashlar masonry in superstructure	$0.40m^{2}$
19	C.R.S. Masonry in superstructure	$0.67m^2$
20	Brick on 1st floor with C.M.	1.0 Sqm/ Mason
21	7.5 cm floor with (1:4:8)	10.0Sqm/mason
22	Teraced flooring -7.5cm TH	20Sqn/mason
23	2.5cm THC.C. flooring	12.50 Sqm/mason
24	Terrazzo flooring 6mm TH mosaic work ove 2cm	5.0 Sqm/m ²
	thick C.C.(1:2:4)	
25	Pre cast Terrazzo tiles 2mm TH, laying on bed of	5.0 Sq/m ²
_	25mm thick L.M.	
26	Ranigang Tile roofing	6.7 Sqm
27	Mangaloe tile roofing including wooden battens, tiles	20 m ²
	set in C.M.	
28	Corrugated G.I. sheet roofing	10Sqm
29	12mmTH current plaster on new brick work	10Sqm
30	Rule pointing on brick work	10Sqm
31	Single coat white washing over old white washing	133 Sqm
32	White washing over one coat printing	33.70 sqm
33	Lime pinning over interior surfaces(Plaster)	5.00sqm
34	Water proofing cement paint to new cement plaster	20.m³/Paints
35	Snow cem washing on plaster surface two coats	20 m ³ /sqm
36	Priming coat with ready mined primer on wood or	40m^3
	steel	
37	Painting two coats with ready mined paint for wood	18m ²
	work	
38	Breaking of over burnt brick to ballast 40mm down	0.75m ³ /Mazd
39	Breaking of over burnt brick to ballast 25mm	$0.55 m^3$

PREAMBLE

1. AREAALLOWANCES:

A. MUNICIPALITIES

- Allow 15% extra over basic rates on labour components works (upto a belt of 12k.m from the Municipal limits in all District Head Quarters for all special class, first class and the remaining Municipalities.
- ii) For works at Tirumala Hills 30% extra over the S.S.Rates and 30% extra for Hoarsely Hills over the S.S.Rates of (R&B) circle, CHITTOOR is allowed on labour component works.
- For works located inside Tirumala Temple allow 20% extra over the rate for Tirumala Hills.

Note: For Items (i) above works within a belt of 12 Kilometers from all the Municipal limits shall be taken into account for purpose of allowing the extra percentage.

B. INDUSTRIAL AREA

10% extra over the basic rates on Labour component shall be allowed (upto a belt of 10km from the Municipal limits).

C. RURALAREA

Allow 15% extra on skilled and semi skilled workmen in rural areas where no other allowances including importation of labour and amenities are admissible

D.AGENCY/TRIBALAREA

Not applicable to this circle.

E. GHAT ROADS

For the Ghat roads steeper than 1 in 20 gradient, the length of the road may be taken as 1.50 times of the existing length of the road for the purpose of leads only for the conveyance of materials based on the certificate for the Ghat Road given by the Superintending Engineer concerned.

NOTE: Under the compelling circumstances the concerned Chief Engineer can adopt the equivalent length of the road at 2.5 times of the actual length.

F.JAIL COMPOUNDS

15% extra is allowed over labour rates for the works in the Jails compounds, only equivalent number of men mazdoors shall be provided for works in jail Premises as no women and Children are allowed inside.

NOTE: If more than one area allowance such as those for (a) Municipalities (b) Industrial area (c) Ghat Roads are applicable for a particular situation only the maximum out of the allowable percentage is to be allowed.

II. IMPORTATION OF LABOUR AND LABOUR AMENITIES:

Maximum of 13% towards labour importation and amenities to labour butting etc., of the total labour component is allowed only in case of works where the labour component (i.e.,) excluding the cost of materials such as cement and steel works out to more than Rs. 1.00 lakhs vide G.O. Ms. No. 270 T R&B(c-I0 Department dated: 20-5-1978 onthe basis of certificate of the Executive Engineer that the local labour available is not adequate and that labour has to be imported for executing the work subject to the approval of the Chief Engineer Concerned.

NOTE:

- Extra percentage towards Labour importation and labour amenities where ever necessary is admissible in addition to other percentages allowable.
- The above percentages may be allowed where ever necessary on the following item.
 - Labour Rates.
 - Materials like Sand, Metal Kankar, Quarry rubbish and clay for foundation or filling etc., bricks and tiles.
 - 3. Jungle Clearance.
 - Dismantling
 - 5. Earth work including leads and lifts.
 - Purely labour involving items like grinding, mixing, binding, steel and feeding ingredients into mixer etc.,
 - 7. Blasting, Drilling holes etc., TUTENOTES IN
 - Stacking metal, Sand, Gravel, Stone, Picking, metalled, gravelled surface spreading metal etc.,
 - Loading and unloading materials excluding that parts of work in conveyance of materials by carts and lories.
 - Labour components to be included in the data for items like masonry, mortar etc.,

Preamble 114

III. WATER LEAD

b)

The following labour is allowed for conveyance of water for every half kilometer lead or part there over the initial lead or part there of over the initial lead of half Kilometer.

a) Cement Concrete
 b) Masonry
 c) Plastering
 1.50 Woman Mazdoor / cum.
 0.50 Woman Mazdoor / 10sqm.

IV. EXCAVATION OF TRIAL TRENCHES, TRIAL PITS AND EXCA-VATION IN RESTRICTED PLACES.

 a) Trial trenches not more than 2 Metres in width and depth not less than twice the Width -20% extra.

ř	1.	Trial pits upto 2 M depth	125% extra
	2.	Over 2M depth and upto 4M depth	200% extra
	3.	Over 4M depth and upto 6M depth	300% extra
	4.	Over 6M depth and upto 8M depth	400% extra
	5.	Over 8M depth and upto 9M depth	400% extra
	6.	Over 9M depth	550% extra

- c) Excavation in Restricted places:
 - i) Foundation of building, excavation of road boundary drains, model sections for canals, excavation of field channels excavation of narrow trenches of similar nature not more than 2M in width and depth not less than twice the width.

50% Extra

- For pipe lines where the depth is less than 1.5times 75% Extra the width
- iii) For pipe lines where the depth is 1.5 times or more than the width 150%Extra
- iv) Silt removal in restricted area such as channels of under tunnels, culverts and syphons.
 150% Extra

NOTE:

- i) The extra percentage allowed is over S.s., 301 rates for the corresponding soil, it includes the charges of alllifts and initial lead but do not include dewatering charges if any in respect of all the items under (a) & (b) above.
- ii) The above extra percentage in respect of excavation in restricted places are not to be allowed in respect of items involving blasting component which is to be taken as 1/3 of the cost.

V. PROVISIONS OF 1st CLASS AND 2nd CLASS WORK MEN UNDER SKILLED LABOUR

30% of the skilled labour provided in the data may be taken as 1st Class and emaining 70% as 2nd class.

Where the nature of work is same no distinction need be made in case or men and women workers.

VI. CEMENT CONCRETE PROPORTION AND REQUIREMENTS TO COARSE AGGREGATES ETC.,(UNIT=1cum)OF FINISHED WORK

- For Cement Concrete proportions (1:4:8) (1:5:10) etc. 0.92 cum of coarse aggregate shall be adopted and the quantity of mortar required calculated proportionately in each case.
- ii) For Cement concrete proportions (1:5:8) (1:6:10) etc., 0.90 cum of coarse aggregate shall be adopted and the quantity of mortar required calculated proportionately in each case.

VII. REQUIREMENTS OF CEMENT MORTAR FOR STONE MASONRY Per unit (1cum) of finished work:

- a) CR. Masonry first sort 0.28 cum of Cement mortar
- b) CR.Masonry second sort 0.32 cum of Cement mortar
- c) R.R.Masonry 0.34 cum of Cement mortar

NOTE: In massive walls above 3M thick, 0.40cum of cement mortar shall be allowed.

VIII. REVETMENT AND APRON WORKS

- The size of stone for the volume range 0.0515 to 0.030 cum shall not be less than 0.30 x 0.30 x 0.15M to 0.30x 0.225 x 0.225M.
- ii) The rate of labour components as per the standard Data book is to be adopted for revetment work only. However for apron work Rs. 2.50 per cum should be deducted.
- Labour charges for rock to be adopt two thirds of the labour charges of revetment item.

IX. SEIGNIORAGE CHARGES

- i) The seigniorage charges as existing actually may be added in the Data rates in the estimates subject to the conditions that the concerned Executive Engineer who prepare the estimates should certify in writing the rates of seigniorage charges in all cases where the seigniorage charges are actually payable.
- ii) The revised seigniorage charges as fixed by Government in G.O.M.S. No.154 (Industries and commerce(M-I) Department Dt. 23-07-96 may be adopted as follows.